
CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 1

A Programming Approach to HCI

CS377A • Spring Quarter 2002

Jan Borchers, Stanford University

http://cs377a.stanford.edu/

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 2

Lecture 1

Tue, Apr 2, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 3

Questionnaire

� We will start with the course in a few minutes.
� Meanwhile, please complete the questionnaire; it

helps us with admission if necessary, and lets us tune
the course to your background.

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 4

Welcome to CS377A!

� Instructor: Jan Borchers
� Acting Assistant Professor, Interactivity Lab
� Research: Post-desktop and multimedia UIs (Personal
Orchestra,...)

� Teaching: HCI since '96, CS247A (3x), CS377C
� PhD CS Darmstadt, MS,BS CS Karlsruhe&London

� TA: David Merrill
� MSCS student, BS SymSys
� Research: music & speech interfaces, facial animation
� Teaching: TA since '99 (CS147, CS108, teaching CS193J)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 5

Administrative Information

� Course times: Tue+Thu 9:15-10:45
� Course location: Meyer 143

� Others as announced via mailing list

� Course home page: http://cs377a.stanford.edu/
� Mailing list: Automatic upon registering for the course
� Email: Please use cs377a-staff@lists.stanford.edu

which reaches both David and Jan
� Jan's Open Office: Tue 3:30-4:30, Gates 201

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 6

Course organization

� Requirements: CS147, Java (CS193J or equivalent)
� Enrollment: limited to 20 students due to project-

oriented course; we will email you within 24hrs
� Credits: 3 (Letter or CR/NC)
� Substitutes CS247A requirement this academic year
� Grading:

� Lab project assignments throughout Quarter (80%)
� Final exam (20%)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 7

Course Topic
� What makes a UI tick?
� Technical concepts, software paradigms and

technologies behind HCI and user interface
development

� Part I: Key concepts of UI systems
� Window System Architecture Model

� Part II: Review and comparison of seminal systems
� Smalltalk, Mac, X/Motif, AWT/Swing, NeXT/OS X,…
� Paradigms & problems, design future UI systems
� Overview of UI prototyping tools, with focus on Tcl/Tk

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 8

Course Topic

� Part III: UIs Beyond The Desktop
� Think beyond today's GUI desktop metaphor
� E.g.: UIs for CSCW, Ubicomp

� The Lab
� Part I: Implementing Simple Reference Window System
� Part II: Development using several existing GUI toolkits
(such as Java/Swing, InterfaceBuilder)

� Part III: Working with Stanford's Interactive Room OS

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 9

Assignment 0:
"Hello Window System"

� Use the GraphicsEventSystem library to implement a
minimalistic window system

� Creates and displays empty background (desktop) on
the screen

� In-class exercise
� Work in groups as needed
� Instructions: see assignment
� Submit via upload by end of class, or by midnight if

you cannot finish it in class

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 10

Reading Assignment

� For Thursday, please read the following article
� Stuart K. Card, Jock D. Mackinlay and George G.
Robertson: "A morphological analysis of the design space of
input devices", ACM Transactions on Information Systems,
9(2), 99-122, 1991

� Available from the ACM Digital Library
(http://www.acm.org/dl/ - Stanford has a site license) or the
course home page

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 11

Lecture 2

Thu, Apr 4, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 12

Review

� 3-Part course structure
� I: Theory, II: Systems, III: Future

� Accompanying lab assignments
� Started Simple Reference Window System

� Register in Axess for mailing list
� http://cs377a.stanford.edu/

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 13

CS377A & HCI

147 377A

247B

247A

377B Cog

277 Hap

377D Eth

378 Cog

547

M250
448

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 14

A Brief History of User Interfaces

� Batch-processing
� No interactive capabilities
� All user input specified in advance (punch cards, ...)
� All system output collected at end of program run
(printouts,...)

� -> Applications have no user interface component
distinguishable from File I/O

� Job Control Languages (example: IBM3090–JCL, anyone?):
specify job and parameters

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 15

A Brief History of User Interfaces
� Time-sharing Systems

� Command-line based interaction with simple terminal
� Shorter turnaround (per-line), but similar program structure
� -> Applications read arguments from the command line,
return results

� Example: still visible in Unix commands

� Full-screen textual interfaces
� Shorter turnaround (per-character)
� Interaction starts to feel "real-time" (example: vi)
� -> Applications receive UI input and react immediately in
main "loop" (threading becomes important)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 16

A Brief History of User Interfaces

� Menu-based systems
� Discover "Read & Select" over "Memorize & Type"
advantage

� Still text-based!
� Example: UCSD Pascal Development Environment
� -> Applications have explicit UI component
� But: choices are limited to a particular menu item at a time
(hierarchical selection)

� -> Application still "in control"

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 17

A Brief History of User Interfaces
� Graphical User Interface Systems

� From character generator to bitmap display (Alto/Star/Lisa..)
� Pointing devices in addition to keyboard

-> Event-based program structure
� Most dramatic paradigm shift for application development
� User is "in control"
� Application only reacts to user (or system) events
� Callback paradigm

� Event handling
� Initially application-explicit
� Later system-implicit

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 18

Design Space of Input Devices

� Card, Mackinlay, Robertson 1991
� Goal: Understand input device design space

� Insight in space, grouping, performance reasoning, new
design ideas

� Idea: Characterize input devices according to
physical/mechanical/spatial properties

� Morphological approach
� device designs=points in parameterized design space
� combine primitive moves and composition operators

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 19

Primitive Movements

� Input device maps physical world to application logic
� Input device := <M, In, S, R, Out, W>

� Manipulation operator
� Input domain
� Device State
� Resolution function In->Out
� Output domain
� Additional work properties

T, dT

R, dR

F, dF

P, dP

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 20

Radio
Example

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 21

Composition
� Merge

� Result=cross product
� E.g., mouse x & y

� Layout
� Spatial collocation
� E.g., mouse xy & buttons
� How different from merge?

� Connect
� Chaining
� E.g., mouse output & cursor
� Virtual devices

Design
Space
(partial
viz.!)

Complete space
:= {all possible
combinations of
primitives and
composition
operators}.
Mouse=1 point!

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 23

In-Class Group Exercise:
Lightning II

� Place the Lightning II
infrared baton system into
the design space
� Two batons in user's hands,

1 tracker in front of user
� Batons can be moved in

space freely, but only
horizontal and vertical
position are detected with 7
bit accuracy (not distance
from tracker)

� Each baton has an on/action
button and an off button

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 24

Is This Space Complete?

� No – it focuses on mechanical movement
� Voice
� Other senses (touch, smell, ...)

� But: Already proposes new devices
� Put circles into the diagram and connect them

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 25

Testing Points

� Evaluate mappings according to
� Expressiveness (conveys meaning exactly)
� Effectiveness (felicity)

� Visual displays easily express unintended meanings
� For input devices, expressiveness suffers if |In|≠|Out|

� |In|<|Out|: Cannot specify all legal values
� |In|>|Out|: Can specify illegal values

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 26

Effectiveness
� How well can the intention be communicated?
� Various figures of merit possible

� Performance-related
� Device bandwidth (influences time to select target,
ergonomics and cognitive load)

� Precision
� Error (% missed, final distance, statistical derivatives)
� Learning time
� Mounting / grasping time

� Pragmatic
� Device footprint, subjective preferences, cost,...

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 27

Example: Device Footprint

� Circle size:=device footprint
� Black: with 12" monitor
� White: with 19" monitor

� What do we see?
� Tablet, mouse expensive
� Worse with larger displays

� But:
� Mouse Acceleration

alleviates this (model of
C:D ratio?)

� Higher resolution mice

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 28

Assignments

� For Tuesday:
� Read Window System Architecture chapter from Gosling's
NeWS book (James Gosling, David S. H. Rosenthal, and
Michelle J. Arden, "The NeWS Book", Springer-Verlag,
1989, Chapter 3; see paper handout)

� For Thursday:
� Implement basic Window class (see assignment handout)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 29

Lecture 3

Tue, Apr 9, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 30

Window Systems: Basic Tasks

� Basic window system tasks:
� Input handling: Pass user input to appropriate application
� Output handling: Visualize application output in windows
� Window management: Manage and provide user controls for
windows

� This is roughly what our Simple Reference Window System
will be implementing

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 31

Window Systems: Requirements

� Independent of hardware and operating system
� Legacy (text-based) software support (virt. terminals)
� No noticeable delays (few ms) for basic operations

(edit text, move window); 5+ redraws/s for cursor
� Customizable look&feel for user preferences
� Applications doing input/output in parallel
� Small resource overhead per window, fast graphics
� Support for keyboard and graphical input device
� Optional: Distribution, 3-D graphics, gesture, audio,...

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 32

In-Class Exercise:
Window Systems Criteria

� In groups of 2, brainstorm criteria that you would look
at when judging a new window system

� We will compile the answers in class afterwards

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 33

Window Systems: Criteria

� Availability (platforms supported)
� Productivity (for application development)
� Parallelism

� external: parallel user input for several applications possible
� internal: applications as actual parallel processes

� Performance
� Basic operations on main resources (window, screen, net),
user input latency – up to 90% of processing power for UI

� Graphics model (RasterOp vs. vector)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 34

Window Systems: Criteria

� Appearance (Look & Feel, exchangeable?)
� Extensibility of WS (in source code or at runtime)
� Adaptability (localization, customization)

� At runtime; e.g., via User Interface Languages (UILs)

� Resource sharing (e.g., fonts)
� Distribution (of window system layers over network)
� API structure (procedural vs. OO)
� API comfort (number and complexity of supplied

toolkit, support for new components)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 35

Window Systems: Criteria

� Independence (of application and interaction logic
inside programs written for the WS)

� IAC (inter-application communication support)
� User-initiated, e.g., Cut&Paste

highmediumlowlowAbstraction

m:n1:1m:1:n1:1Relation

noyesnoyesDirected

anyspecialspecialspecialData types

longmediumshortshortDuration

OLEDDEClipboardSelectionTechnique

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 36

Window Systems: Conflict

� WS developer wants: elegant design, portability
� App developer wants: Simple but powerful API
� User wants: immediate usability+malleability for

experts
� Partially conflicting goals
� Architecture model shows if/how and where to solve
� Real systems show sample points in tradeoff space

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 37

The 4-Layer Model
of Window System Architectures

� Layering of virtual
machines

� Good reference model
� Existing (esp. older)

systems often fuzzier
� Where is the OS?
� Where is the user?

� physical vs. abstract
communication

� cf. ISO/OSI model

Window Manager

Base Window System

Graphics & Event Library

Hardware

User Interface Toolkit

Applications

m
or
e
ab
st
ra
ct
, a
pp
lic
at
io
n-
/u
se
r-
or
ie
nt
ed

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 38

The 4-Layer Model
of Window System Architectures

� UI Toolkit (a.k.a. Construction Set)
� Offers standard user interface objects (widgets)

� Window Manager
� Implements user interface to window functions

� Base Window System
� Provide logical abstractions from physical resources (e.g.,
windows, mouse actions)

� Graphics & Event Library (implements graphics model)
� high-performance graphics output functions for apps,
register user input actions, draw cursor

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 39

A Note On Gosling's Model

� Same overall structure
� But certain smaller differences

� E.g., defines certain parts of the GEL to be part of the BWS
� Written with NeWS in mind

� We will follow the model presented here
� More general
� 5 years newer
� Includes Gosling's and other models

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 40

In-Class Exercise: Map our
Window System into model

� Which layers are supplied by the toolkit?
� Which layers are you implementing?
� What is missing so far?

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 41

Graphics & Event Library

� Device-dependent sublayer to optimize for hardware
� Device-independent sublayer hides HW vs. SW

implementation (virtual machine)

WM
BWS
GEL
HW

UITK

Driver-specific dataMemory addresses

Canonical eventsLogical coordinates

Graphics hardware Device drivers

Graphics objects
& actions Event queues

Device-independent

Device-dependent

Apps

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 42

The RasterOp Model

� Original graphics model
� Suited to bitmap displays with linear video memory

� Adresses individual pixels directly
� Fast transfer of memory blocks (a.k.a. bitblt: bit block transfer)

� Absolute integer screen coordinate system
� Resolution problem

� Simple screen operations (the XOR trick,...)
� But break down with color screens

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 43

The Vector Model

� API uses normalized coordinate system
� Device-dependent transformation inside layer
� Advantage: units are not pixels of specific device anymore
� Applications can output same image data to various screens
and printer, always get best possible resolution (no
"jaggies")

� Originally implemented using Display PostScript
� Included arbitrary clipping regions
� a.k.a. "Stencil/Paint Model"

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 44

Graphics Library Objects: Canvas

� Memory areas with coordinate system and memory-
to-pixel mapping

� Defined by: Start address, size, bit depth, logical
arrangement in memory (only relevant for pixmaps)
� Z format (consecutive bytes per pixel, easy pixel access)
� XY format (consecutive bytes per plane, easy color access)

Z format XY format

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 45

Graphics Library Objects:
Output Objects

� Elementary
� Directly rendered by graphics hardware
� E.g., Circle, line, raster image

� Complex
� Broken down by software into elementary objects to render
� Example: Fonts

� Broken down into raster images (bitmap/raster/image font,
quick but jagged when scaled)

� Or broken down outline curves (scalable/outline/vector
fonts, scalable but slower)

� Real fonts do not scale arithmetically!

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 46

Graphics Library Objects:
Graphics Contexts

� Status of the (virtual) graphics processor
� Bundle of graphical attributes to output objects
� E.g., line thickness, font, color table
� Goal: reduce parameters to pass when calling graphics

operations
� Not always provided on this level

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 47

Graphics Library: Actions
� Output (Render) actions for objects described above
� Three "memory modes"

� Direct/Immediate Drawing
� Render into display memory and forget

� Command-Buffered/Structured Drawing, Display List Mode
� Create list of objects to draw
� May be hierarchically organized and/or prioritized
� Complex but very efficient for sparse objects

� Data-Buffered Drawing
� Draw into window and in parallel into "backup" in memory
� Memory-intensive but simple, efficient for dense objects

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 48

Graphics Library: Actions

� Who has to do redraw?
� Buffered modes: GEL can redraw, needs trigger
� Immediate mode: application needs to redraw (may
implement buffer or display list technique itself)

� Mouse cursor is always redrawn by GEL (performance)
� Unless own display layer for cursor (alpha channel)
� Triggered by event part of GEL

� Clipping is usually done by GEL (performance)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 49

Event Library: Objects

� Events
� Driver-specific: physical coordinates, timestamp, device-
specific event code, in device-specific format

� Canonical: logical screen coordinates, timestamp, global
event code, in window system wide unified format

� Event Library mediates between mouse/kbd/tablet/... drivers
and window-based event handling system by doing this
unification

� Queue
� EL offers one event queue per device

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 50

Event Library: Actions

� Drivers deliver device-specific events interrupt-driven
into buffers with timestamps

� EL cycles driver buffers, reads events, puts unified
events into 1 queue per device (all queues equal
format)

� Update mouse cursor without referring to higher
layers

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 51

GEL: Extensions

� GL: Offer new graphics objects/actions (performance)
� EL: Support new devices
� Availability

� Most systems: Not accessible to application developer
� GEL as library: Only with access to source code (X11)
� GEL access via interpreted language: at runtime (NeWS)

� Example: Download PostScript code to draw
triangles, gridlines, patterns,... into GEL

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 52

GEL: Summary

� 4-layer model
� Graphics & Event Library

� Hides hardware and OS aspects
� Offers virtual graphics/event machine
� Often in same address space as Base Window System
� Many GEL objects have peer objects on higher levels

� E.g., windows have canvas

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 53

In-Class Design Exercise

� Work in groups of 2
� Define XWindow class (basic components+methods)
� Integrate with WindowSystem class

� Windows as components of WindowSystem?
� Windows as first-class objects?

� Think about future needs (defining repaint()
methods,...)

� No user interface to windows yet; will be WM
� Time to finish until Thursday's class

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 54

Lecture 4

Thu, Apr 11, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 55

Review

� Criteria for judging window systems
� 4-layer architecture
� Graphics & Event Library

� Device-dependent & independent sublayer
� Objects: Canvas, output objects, graphics contexts
� Graphics models, drawing modes
� Canonical events
� Extensibility

WM
BWS
GEL
HW

UITK
Apps

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 56

Base Window System: Tasks

� Provide mechanisms for operations on WS-wide data
structures

� Ensure consistency
� Core of the WS
� Most fundamental differences in structure between

different systems
� user process with GEL, part of OS, privileged process

� In general, 1 WS with k terminals, n applications, m
objects (windows, fonts) per app (l WS if distributed)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 57

Base Window System: Structure

WM

GEL
HW

UITK

EventsCanvas

AddressingAccess Control

DemultiplexRequest

Queue/DequeueMemory Allocation

MultiplexMutual Exclusion

Graphics Library Event Library

Requests, Output,
Changes

Dialog input,
State messaging

Apps
for apps 1..n

Connection Mgmt.

Resource Operations

Synchronization

Elementary op's.

Objects

BWS

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 58

Base Window System: Objects

� Windows, canvas, graphics contexts, events
� Requested explicitly from applications (except

events), but managed by BWS—why?
� Manage scarce resources for performance & efficiency
� Applications share resources
� Consistency and synchronization

� Real vs. virtual resources
� (Video) memory, mouse, keyboard, usually also network
� Applications only see "their" virtual resources

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 59

Windows & Canvas
� Components:

� Owner (application originally requesting the window)
� Users (reference list of IDs of all applications temporary
aiming to work with the window)

� Size, depth, border, origin
� State variables (visible, active,...)

� Canvas
� =Window without state; not visible

� Operations:
� Drawing in application coordinate system
� State changes (make (in)visible, make (in)valid,...)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 60

Events
� Components:

� Event type
� Time stamp
� Type-specific data
� Location
� Window
� Application

� Event Processing:
� Collect (multiplex) from device queues
� Order by time stamp, determine application & window
� Distribute (demultiplex) to application event queues

Device 1...Device n

App 1...App m

Order

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 61

Events

� BWS can generate events itself based on window
states (e.g., "needs restoring") or certain incoming
event patterns (replace two clicks by double-click),
and insert them into queue

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 62

Fonts

� Increasingly offered by GEL (performance), but
managed here
� Load completely into virtual memory, or
� Load each component into real memory, or
� Load completely into real memory

� Components
� Application owner, other apps using it (as with windows)

� Typically shared as read-only -> owner "just another user"
� Name, measurements (font size, kerning, ligatures,...)
� Data field per character containing its graphical shape

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 63

Graphics Context

� Graphics Context Components
� Owner app, user apps
� Graphics attributes (line thickness, color index, copy
function,...)

� Text attributes (color, skew, direction, copy function,...)
� Color table reference

� GEL: 1 Graphics context at any time, BWS: many
� Only one of them active (loaded into GEL) at any time

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 64

Color Tables

� Components
� Owner app, user apps
� Data fields for each color entry

� RGB, HSV, YIQ,...

� Fault tolerance
� BWS should hold defaults for all its object type parameters
to allow underspecified requests

� BWS should map illegal object requests (missing fonts,...) to
legal ones (close replacement font,...)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 65

Communication Bandwidth
� WS needs to talk to other apps across network

� Typically on top of ISO/OSI layer 4 connection (TCP/IP,...)
� But requires some layer 5 services (priority, bandwidth,...)
� Usually full-duplex, custom protocol with efficient coding
� Exchange of character and image data, often in bursts
� Each application expects own virtual connection
� Bandwidth is scarce resource

� Components of a Connection object:
� Partner (IP+process,...), ID, parameters, encoding, message class

(priority,...)
� Elementary operations: decode, (de)compress, checksum,...
� Optional operations: manage connection, address service

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 66

BWS: Actions

� Basic set of operations for all object types
� Allocate, deallocate

� Other elementary operations for certain types
� Read and write events to and from event queues
� Filtering events for applications

� How to manage window collection in BWS?
� Tree (all child windows are inside their parent window)
� Why?

� Remember: on the BWS level, all UI objects are windows
—not just document windows of applications!

->Visibility, Event routing

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 67

In-Class Exercise

� Determine a valid tree structure for the window
arrangement shown below

1

2

4

5

6 3
7

8

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 68

Shared Resources

� Reasons for sharing resources: Scarcity, collaboration
� Problems: Competition, consistency
� Solution: Use "users" list of objects

� Add operations to check list, add/remove users to object
� Deallocate if list empty or owner asks for it

� How does BWS handle application requests?
� Avoid overlapping requests through internal synchronization
� Use semaphores, monitors, message queues

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 69

Synchronization Options

� Synchronize at BWS entrance
� One app request entering the BWS is carried out in full
before next request is processed (simple but potential delays)

� Synchronize on individual objects
� Apps can run in parallel using (preemptive) multitasking
� Operations on BWS objects are protected with monitors

� Each object is monitor, verify if available before entering
� high internal parallelism but complex, introduces overhead

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 70

OS Integration
� Single address space

� No process concept, collaborative control (stability?)
� "Window multitasking" through procedure calls
(cooperation on common stack)

� Xerox Star, Apple Mac OS, MS Windows 3.x

� BWS in kernel
� Apps are individual processes in user address space
� BWS & GEL are parts of kernel in system address space
� Each BWS (runtime library) call is kernel entry (expensive
but handled with kernel priority)

� Communication via shared memory, sync via kernel

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 71

OS Integration

� BWS as user process
� BWS loses privileges, is user-level server for client apps,
Communication via Inter-Process Communication (IPC)
� Single-thread server ("secretary"): no internal parallelism,
sync by entry

� Server with specialized threads ("team"): each thread
handles specific server subtask, shared BWS objects are
protected using monitors

� Multi-server architecture: Several separate servers for
different tasks (font server, speech recognition and
synthesizing server,... — see distributed window systems)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 72

Summary

� BWS works with device- and OS-independent
abstractions (only very general assumptions about OS)

� Supports system security and consistency through
encapsulation and synchronization
� map n apps with virtual resource requirements to 1 hardware

� Offers basic API for higher levels (comparable to our
Simple Reference Window System)
� Where are window controls, menus, icons, masks, ...?

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 73

Assignment #2

� Extend the Simple Window System to actually create
visible windows and close them again

� Include sample application that creates three
overlapping windows, drawing different geometrical
shapes inside each after creating it, and then closes
them again one by one. Make the app pause between
each creation and closing so it becomes clear that the
redrawing of uncovered windows happens correctly.

� See assignment handout for more details.

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 74

Lecture 5

Tue, Apr 16, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 75

Review

� Base Window System
� Map n applications with virtual resources
to 1 hardware

� Offer shared resources, synchronize access
� Windows & canvas, graphics contexts,
color tables, events

� Event multiplexing and demultiplexing
� Window hierarchies
� BWS & OS: single address space, kernel
ext., user process

WM

GEL
HW

UITK
Apps

BWS

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 76

Window Manager: Motivation

� Position and decorate windows
� Provide Look&Feel for interaction with WS
� So far: applications can output to windows

� User control defined by application
� May result in inhomogeneous user experience

� Now: let user control windows
� Independent of applications
� User-centered system view

� BWS provides mechanism vs. WM implements policy

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 77

Window Manager: Structure

BWS
GEL
HW

UITK
Behavior ("Feel")Appearance

("Look")

Pop-up menu at
click

Tiling,
Overlapping,...

Fetch eventsRequest position
change,...

Application-independent
user interface

Apps
Look & Feel

Techniques

Communicate
with BWS

WM

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 78

Screen Management
� What is rendered where on screen? (layout question)
� Where empty space? What apps iconified? (practical q's)
� Example: Negotiating window position

� Application requests window at (x,y) on screen;
ignores position afterwards by using window coordinate system

� BWS needs to know window position at any time to handle
coordinate transformation, event routing, etc. (manages w)

� User wishes to move window to different position
� Or: Requested position is taken by another window

� Three competing instances (same for color tables,...)
� Solution: Priorities, for example:

� Prior (app) < Prior (WM) < Prior (user)
� WM as advising instance, user has last word

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 79

Session Management

� Certain tasks are needed for all apps in consistent way
� Move window, start app, iconify window

� Techniques WM uses for these tasks
� Menu techniques

� Fixed bar+pull-down (Mac), pop-up+cascades (Motif),...
� Window borders

� Created by WM, visible/hidden menus, buttons to
iconify/maximize, title bar

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 80

Session Management

� WM techniques continued
� Direct manipulation

� Manipulate onscreen object with real time feedback
� Drag & drop,...
� Early systems included file (desktop) manager in window
manager; today separate "standard" application (Finder,...)

� Icon technique: (de)iconifying app windows
� Layout policy: tiling, overlapping

� Studies show tiling WM policy leads to more time users
spend rearranging windows

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 81

Session Management

� WM techniques continued
� Input focus: Various modes possible

� Real estate mode (focus follows pointer): mouse/kbd/...
input goes to window under specific cursor (usually mouse)

� Listener mode: input goes to activated window, even when
mouse leaves window

� Click-to-type: Special listener mode (clicking into window
activates it) - predominant mode today

� Virtual screens
� Space for windows larger than visible screen
� Mapping of screen into space discrete or continuous

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 82

Session Management

� WM techniques continued
� Look & Feel evolves hand-in-hand with technology

� Audio I/O
� Gesture recognition
� 2.5-D windows (implemented by WM, BWS doesn't know)
� Transparency

� To consider:
� Performance hit?
� Just beautified, or functionally improved?

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 83

Late Refinement

� WM accompanies session, allows user to change
window positions, etc. (changing app appearance)

� For this, application must support late refinement
� App developer provides defaults that can be changed by user
� Attributes must be publicised as configurable, with possible
values

� App can configure itself using startup files (may be
inconsistent), or WM can provide those values when starting
app

� With several competing instances: priorities
(static/dynamic!...)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 84

Levels of Late Refinement

� Per session, for all users
� System-wide information (table, config file,...) read by WM

� Per application, for all users
� Description for each application, in system-wide area

� Per application, per user
� Description file for each application, stored in home
directory

� Per application, per launch
� Using startup parameters (options) or by specifying specific
other description file

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 85

Implementing Late Refinement
� Table files

� Key-value pairs, with priority rule for competing entries
� Usually clear text (good idea), user versions usually editable
� Modern versions: XML-based

� WM-internal database
� Access only via special editor programs
� Allows for syntax check before accepting changes, but less
transparent; needs updating when users are deleted,.....

� Random Rant: Why Non-Clear-Text Config Files Are Evil

� Delta technique
� Starting state + incremental changes; undo possible

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 86

Window Manager: Location

� WM=client of BWS, using its access functions
� WM=server of apps, can change their appearance
� Several possible architectures

� WM as upper part of BWS
� Saves comms overhead
� But overview suffers

� WM as separate server
� More comms
� But exchangeable WM

BWS
GEL
HW

Apps

WM

BWS
GEL
HW

Apps

WM

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 87

Window Manager: Location

� Separate user process
� Uses mechanism of shared resources
� E.g., requests window position from BWS,
checks its conformance with its layout policy,
and requests position change if necessary

� More comms, but same protocol as between apps & BWS;
no direct connection app—WM

WM

BWS
GEL
HW

Apps

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 88

Window Manager: Conventions

� Visual consistency
� For coding graphical information across apps
� Reduce learning effort

� Behavioral consistency
� Central actions tied to the same mouse/kbd actions (right-
click for context menu, Cmd-Q to quit) - predictability

� Description consistency
� Syntax & semantics of configuration files / databases
consistent across all levels of late refinement

� Usually requires defining special language

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 89

Window Manager: Summary

� WM leads from system- to user-centered view of WS
� Accompanies user during session
� Potentially exchangeable

� Allows for implementation of new variants of desktop
metaphor without having to change entire system

� E.g., still much room for user modeling (see, e.g., IUI 2002)

� WM requires UI Toolkit to implement same
Look&Feel across applications

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 90

Administrative Details

� Class times will need to remain at TuTh 9:15-10:45
� Beginning Apr 30, classes will be held in the iRoom

(Gates Building, basement, room B23)
� Thu: UI Toolkit
� Next week:

� Jan @ CHI 2002, Minneapolis
� Design sessions on final SWS assignment with David

� Afterwards, Part II begins
� Craig Latta: Smalltalk/Squeak

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 91

Lecture 6

Thu, Apr 18, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 92

Review: Window Manager
� Implements user interface (Look&Feel

policy) for interaction with windows
� Window borders, menus, icons, direct
manipulation, layout policies

� Virtual screens, 2.5-D,...
� Accompanies user during session,

across applications
� Late refinement

� per-system, per-app, per-user settings
� Implementation

� with BWS, separate server, user process

BWS
GEL
HW

UITK
Apps

WM

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 93

User Interface Toolkit

� Motivation: Deliver API
� problem/user-oriented instead of hardware/BWS-
specific

� 50–70% of SW development go into UI
� UITK should increase productivity

BWS
GEL
HW

UIDS/UIDL

Interface Guidelines (Look&Feel)

Complex widgets

Elementary widgets

Apps
WM UITK

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 94

UITK: Concept

� Two parts
� Widget set (closely connected to WS)
� UIDS (User Interface Design Systems, support UI design
task

� Assumptions
� UIs decomposable into sequence of dialogs (time) using
widgets arranged on screen (space)

� All widgets are suitable for on-screen display (no post-
desktop user interfaces)

� Note: decomposition not unique

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 95

UITK: Structure

� Constraints
� User works on several tasks in parallel -> parallel apps
� Widgets need to be composable, and communicate with
other widgets

� Apps using widget set (or defining new widgets) should be
reusable

� Structure of procedural/functional UITKs
� Matched procedural languages and FSM-based, linear
description of app behavior

� But: Apps not very reusable

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 96

UITK: Structure

� OO Toolkits
� Widget handles certain UI actions in its methods, without
involving app

� Only user input not defined for widget is passed on to app
asynchronously (as seen from the app developer)
� Matches parallel view of external control, objects have their
own "life"

� Advantage: Subclass new widgets from existing ones
� Disadvantage:

� Requires OO language (or difficult bridging, see Motif)
� Debugging apps difficult

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 97

UITK: Control Flow

� Procedural model:
� App needs to call UITK routines with parameters
� Control then remains in UITK until it returns it to app

� OO model:
� App instantiates widgets
� UITK then takes over, passing events to widgets in its own
event loop

� App-specific functionality executed asynchronously in
callbacks (registered with widgets upon instantiation)

� Control flow also needed between widgets

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 98

Defining Widgets

� Widget:=(W=(w1..wk), G=(g1..gl), A=(a1..am), I=(i1..in))
� Output side: windows W, graphical attributes G
� Input side: actions A that react to user inputs I
� Mapping inputs to actions is part of the specification, can change

even at runtime
� Actions can be defined by widget or in callback

� Each widget type satisfied a certain UI need
� Input number, select item from list,...

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 99

Simple Widgets
� Elementary widgets

� Universal, app-independent, for basic UI needs
� E.g., button (trigger action by clicking), label (display text),
menu (select 1 of n commands), scrollbar (continuous
display and change of value), radio button (select 1 of n
attributes)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 100

In-Class Exercise: Button

� What are the typical components (W,G,A,I) of a
button?

� Sample solution:
� W=(text window, shadow window)
� G=(size, color, font, shadow,...)
� A=(enter callback, leave callback, clicked callback)
� I=(triggered with mouse, triggered with key, enter, leave)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 101

Simple Widgets

� Container widgets
� Layout and coordinate other widgets
� Specification includes list C of child widgets they manage
� Several types depending on layout strategy

� Elementary & Container widgets are enough to create
applications and ensure look&feel on a fundamental
level

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 102

Complex Widgets

� Applications will only use subset of simple widgets
� But also have recurring need for certain widget

combinations depending on app class (text editing,
CAD,...)
� Examples: file browser, text editing window

� Two ways to create complex widgets
� Composition (combining simple widgets)
� Refinement (subclassing and extending simple widgets)
� Analogy in IC design: component groups vs. specialized ICs

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 103

Widget Composition

� Creating dynamic widget hierarchy by hierarchically
organizing widgets into the UI of an application
� Some will not be visible in the UI

� Starting at root of dynamic widget tree, add container
and other widgets to build entire tree
� Active widgets usually leaves
� Dynamic because it is created at runtime
� Can even change at runtime through user action (menus,...)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 104

Widgets and Windows

� The dynamic widget tree usually matches geographical contains
relation of associated BWS windows

� But: Each widget usually consists of several BWS windows
� -> Each widget corresponds to a subtree of the BWS window

tree!
� -> Actions A of a widget apply to is entire geometric range

except where covered by child widgets
� -> Graphical characteristics G of a widget are handled using

priorities between it, its children, siblings, and parent

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 105

Refinement of Widgets

� Create new widget type by refining existing type
� Refined widget has mostly the same API as base

widget, but additional or changed features, and fulfils
Style Guide

� Not offered by all toolkits, but most OO ones
� Refinement creates the Static Hierarchy of widget

subclasses
� Example: Refining text widget to support styled text

(changes mostly G), or hypertext (also affects I & A)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 106

Late Refinement of Widgets

� App developer can compose widgets
� Widget developer can refine widgets
� -> User needs way to change widgets
� -> Should be implemented inside toolkit
� Solution: Late Refinement (see WM for discussion)
� Late refinement cannot add or change type of widget

characteristics or the dynamic hierarchy
� But can change values of widget characteristics

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 107

Style Guidelines

� How support consistent Look&Feel?
� Document guidelines, rely on developer discipline

� E.g., Macintosh Human Interface Guidelines (but included
commercial pressure from Apple & later user community)

� Limiting refinement and composition possible
� Containers control all aspects of Look&Feel
� Sacrifices flexibility

� UIDS
� Tools to specify the dialog explicitly with computer support

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 108

Types of UIDS
� Language-oriented

� Special language (UIL) specifies composition of widgets
� Compiler/interpreter implements style guidelines by
checking constructs

� Interactive
� Complex drawing programs to define look of UI
� Specifying UI feel much more difficult graphically

� Usually via lines/graphs connecting user input (I) to actions
(A), as far as allowed by style guide

� Automatic
� Create UI automatically from spec of app logic (research)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 109

Assignment: Window Manager

� See handout

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 110

Lecture 7

Tue, Apr 30, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 111

Smalltalk & Squeak

� Guest lecture by Craig Latta, IBM TJ Watson
Research Center

� See course website for his course notes, handouts, and
system images to run Squeak on the Macs in Meyer

� General information about Squeak at
http://www.squeak.org/

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 112

Smalltalk: Architecture

� Common ancestor of all window systems
� PARC, early 70's, initially on 64K Alto

� Complete universe, simplest WS archit.
� OS, language, WS, tools: single address
space, single process structure,
communicate with procedure calls

� Initially, OS & WS merged,on bare machine
� Later, WS on top of OS, but still "universe"

� Introduced windows, scrolling, pop-up
menus, virtual desktop, MVC

BWS
GEL
HW

UITK
Apps

WM

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 113

Smalltalk: Evaluation
� Availability: high (Squeak,...)
� Productivity: medium (depending on tools, libs used)
� Parallelism: originally none, now external

� But linguistic crash protection

� Performance: medium (high OO overhead since
everything is an object)

� Graphic model: originally RasterOp
� Style: flexible (see Morphic, for example)
� Extensibility: highest (full source available to user,

code browser)
CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 114

Smalltalk: Evaluation

� Adaptability: low (no explicit structured user resource
concept; although storing entire image possible)

� Resource sharing: high
� Distribution: none originally, yes with Squeak
� API structure: pure OO, Smalltalk language only
� API comfort: initially low, higher with

Squeak&Morphic
� Independency: High (due to MVC paradigm)
� Communication: flexible (objects pass messages)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 115

Lecture 8

Thu, May 2, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 116

The Apple Macintosh

� Introduced in 1984
� Based on PARC Smalltalk, Star, Tajo
� Few technical innovations (QuickDraw)

� Otherwise, rather steps back

� But landmark in UI design and consistency policies
� First commercially successful GUI machine
� Advertised with what is sometimes considered the best
commercial in history:
http://www.apple-history.com/movies/1984.mov

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 117

Macintosh: Architecture

� One address space, communication
with procedure calls

� "No" OS—app is in charge,
everything else is a subroutine
library ("Toolbox")
� Functional, not object-oriented
(originally written in Pascal)

� Organized into Managers
� Mostly located in "the Mac ROM"

BWS
GEL
HW

UITK
Apps

WM

RAM

Toolbox
in ROM
(+RAM
from disk)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 118

The Macintosh Toolbox

� Sets of routines to do various tasks
� Functional, not object-oriented (originally written in Pascal)
� Organized into Managers

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 119

Event Manager

� Event loop core of any Mac app
� Processes events (from user or

system) and responds
� Event Manager offers functions

to deal with events
� extern pascal Boolean
GetNextEvent(short eventMask,
EventRecord *theEvent);

� Cooperative Multitasking
� External: App must allow user

to switch to other apps
� Internal: App must surrender

processor to system regularly

struct EventRecord {
 short what; // type of event
 long message; // varies depending
 // on type
 long when; // Timestamp in ticks
 Point where; // mouse position
 // in global coords
 short modifiers; // modifier keys
}; held down

Event types
enum {
 nullEvent = 0,
 mouseDown = 1,
 mouseUp = 2,
 keyDown = 3,
 keyUp = 4,
 autoKey = 5,
 updateEvt = 6,
 diskEvt = 7,
 activateEvt = 8,
 osEvt = 15,
};

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 120

Control Manager
� Controls: Buttons, checkboxes, radio buttons, pop-up

menus, scroll bars,...
� Control Manager: Create, manipulate, redraw, track &

respond to user actions

Dialog Manager
� Create and manage dialogs and alerts
� (System-) modal, movable (application-modal), or

modeless dialog boxes—choice depends on task!

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 121

Window Manager(!)
� Not the Window Manager from our layer model
� Create, move, size, zoom, update windows
� App needs to ensure background windows look

deactivated (blank scrollbars,...)

Menu Manager
� Offers menu bar, pull-down, hierarch. & pop-up menus
� Guidelines: any app must support Apple, File, Edit,

Help, Keyboard, and Application menus

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 122

Finder Interface
� Defining icons for applications and documents
� Interacting with the Finder

Other Managers
� Scrap Manager for cut&paste among apps
� Standard File Package for file dialogs
� Help Manager for balloon help
� TextEdit for editing and displaying styled text
� Memory Manager for the heap
� List Manager, Sound Manager, Sound Input Manager,...

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 123

Resource Manager
� Resources are basic elements of any Mac app:

Descriptions of menus, dialog boxes, controls, sounds,
fonts, icons,...
� Makes it easier to update, translate apps

� Stored in resource fork of each file
� Each Mac file has data & resource fork
� Data fork keeps application-specific data (File Manager)
� Resource fork keeps resources in structured format
(Resource Manager)
� For documents: Preferences, icon, window position
� For apps: Menus, windows, controls, icons, code(!)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 124

Resource Manager

� Identified by type (4 chars) and ID (integer)
� Standard resource types (WIND, ALRT, ICON,...)
� Custom resource types (defined by app)

� Read and cached by Resource Manager upon request
� Priorities through search order when looking for resource

� Last opened document, other open docs, app, system

� Can write resources to app or document resource fork
� E.g., last window position

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 125

ResEdit
� Graphical Resource

Editor (Apple)
� Overview of resources

in resource fork of any
file (app or doc), sorted
by resource type

� Opening a type shows
resources of that type sorted by their ID

� Editors for basic resource types built in (ICON,DLOG,...)

� Big productivity improvement over loading resources
as byte streams

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 126

Macintosh: Evaluation
� Availability: high (apps from 1984 still run today!)
� Productivity: originally low (few tools except ResEdit; Mac was

designed for users, not programmers)
� Parallelism: originally none, later external+internal

� External: Desk accessories, Switcher, MultiFinder
� Internal: Multi-processor support in mid-90's

� Performance: high (first Mac was 68000 @ 1MHz, 128K RAM)
� Graphic model: QuickDraw (RasterOp+fonts, curves...)
� Style: most consistent to this day (HI Guidelines, Toolbox)
� Extensibility: low (Toolbox in ROM, later extended via System

file)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 127

Macintosh: Evaluation

� Adaptability: medium (System/app/doc preferences in
resources, but limited ways to change look&feel)

� Resource sharing: medium (fonts, menu bar shared by
apps,...)

� Distribution: none
� API structure: procedural (originally Pascal)
� API comfort: high (complete set of widgets)
� Independency: Medium (most UI code in Toolbox)
� Communication: originally limited to cut&paste

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 128

In-Class Exercise:
Simple Mac Application

� Write a simple Macintosh application that opens a
window and exits upon mouse click

void main (void)
{

WindowPtr window;
Rect rect;

InitGraf (&qd.thePort); // must be called before any other TB Manager (IM IX 2-36)
InitFonts (); // after ig, call just to be sure (IM IX 4-51)
FlushEvents(everyEvent,0); // ignore left-over (finder) events during startup
InitWindows (); // must call ig & if before (IM Toolbox Essentials 4-75; IM I 280)

InitCursor (); // show arrow cursor to indicate that we are ready

SetRect (&rect, 100, 100, 400, 300);

window = NewCWindow (NULL, &rect, "\pMy Test", true, documentProc,
(WindowPtr) -1, FALSE, 0);

do {
}
while (!Button());

DisposeWindow (window);
} CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 130

Lecture 9

Tue, May 7, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 131

Review: Classic Mac OS

� Designed for the user, not the developer
� First commercially succesful GUI system
� Technically few advances
� One address space, one process, "no" OS
� But revolutionary approach to UI consistency (HI Guidelines)

� Macintosh Toolbox
� Pascal procedures grouped into Managers, ROM+RAM
� Extended as technology advanced (color, multiprocessing,...),
but architecture was showing its age by late 90s

� Inspiration for other GUIs, esp. MS Windows

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 132

The X Window System ("X")
� Asente, Reid (Stanford): W window system for V OS,

(1982)
� W moved BWS&GEL to remote machine, replaced local
library calls with synch. communication

� Simplified porting to new architectures, but slow under Unix

� MIT: X as improvement over W (1984)
� Asynchronous calls: much-improved performance
� Application=client, calls X Library (Xlib) which packages
and sends GEL calls to the X Server and receiving events
using the X Protocol.

� Similar to Andrew, but window manager separate
� X10 first public release, X11 cross-platform redesigned

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 133

X: Architecture

� X is close to
architecture
model

Xlib

HW

Widget Set
Xt Intrinsics

Application

X Server

UITK

BWS+GEL
Network

WM
Xlib

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 134

X Server

� X11 ISO standard, but limited since static protocol
� X server process combines GEL and BWS

� Responsible for one keyboard (one EL), but n physical
screens (GLs)

� One machine can run several servers

� Applications (with UITK) and WM are clients
� GEL: Direct drawing, raster model, rectangular clipp.

� X-Server layers: Device-dependent X (DDX), device-
independent X (DIX)

� BWS can optionally buffer output regions

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 135

X Protocol

� Between X server process and X clients (incl. WM)
� async, bidirectional byte stream, order guaranteed by

transport layer
� Implemented in TCP, but also others (DECnet,...)
� Creates about 20% time overhead with apps over network

� Four packet types
� Request, (Client->Server)
� Reply, Event, Error (Server->Client)

� Packets contain opcode, length, and sequence of
resource IDs or numbers

Typical Xlib application
(pseudocode)

#include Xlib.h, Xutil.h
Display *d; int screen; GC gc; Window w; XEvent e;
main () {

d=XOpenDisplay(171.64.77.1:0);
screen=DefaultScreen(d);
w=XCreateSimpleWindow(d, DefaultRootWindow(d),

x,y,w,h,border,BlackPixel(d),WhitePixel(d)); // foreground & background
XMapWindow(d, w);
gc=XCreateGC(d, w, mask, attributes); // Graphics Context setup left out here
XSelectInput(d, w, ExposureMask|ButtonPressMask);
while (TRUE) {

XNextEvent(d, &e);
switch (e.type) {

case Expose: XDrawLine (d, w, gc, x,y,w,h); break;
case ButtonPress: exit(0);

} } }

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 137

X: Resources

� Logical: pixmap, window, graphic context, color map,
visual (graphics capabilities), font, cursor

� Real: setup (connection), screen (several), client
� All resources identified via RIDs
� Events: as in ref. model, from user, BWS, and apps,

piped into appropriate connection
� X Server is simple single-entrance server (round-

robin), user-level process

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 138

Window Manager
� Ordinary client to the BWS
� Communicates with apps via hints in X Server
� Look&Feel Mechanisms are separated from Look&Feel Policy
� Late refinement (session, user, application, call)
� Dynamically exchangeable, even during session

� twm, ctwm, gwm, mwm (Motif), olwm (OpenLook), rtl (Tiling), ...
� Implement different policies for window & icon placement,

appearance, all without static menu bar, mostly pop-ups, flexible
listener modes

� No desktop functionality (separate app)
� Only manages windows directly on background (root) window,

rest managed by applications (since they don't own root window
space)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 139

X: UITK

� X programming support consists of 3 layers
� Xlib:

� Lowest level, implements X protocol client, procedural (C)
� Programming on the level of the BWS
� Hides networking, but not X server differences (see
"Visual")

� Packages requests, usually not waiting for reply (async.)
� At each Xlib call, checks for events from server and creates
queue on client (access with XGetNextEvent())

� Extensions require changing Xlib & Xserver source &
protocol

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 140

X: UITK

� Xlib offers functions to create, delete, and modify server
resources (pixmaps, windows, graphic contexts, color maps,
visuals, fonts), but app has to do resource composition

� Display (server connection) is parameter in most calls

� X Toolkit Intrinsics (Xt)
� Functions to implement an OO widget set class (static) hierarchy
� Programming library and runtime system handling widgets
� Exchangeable (InterViews/C++), but standard is in C
� Each widget defined as set of "resources" (attributes)
(XtNborderColor,...)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 141

X: UITK

� X Toolkit Intrinsics
� Just abstract meta widget classes (Simple, Container, Shell)
� At runtime, widgets have 4 states

� Created (data structure exists, linked into widget tree, no
window)

� Managed (Size and position have been determined—policy)
� Realized (window has been allocated in server; happens
automatically for all children of a container)

� Mapped (rendered on screen)—may still be covered by
other window!

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 142

UITK

� X Toolkit Intrinsics
� Xt Functions (XtRealizeWidget(),...) are generic to work
with all widget classes

� Parameters are generic—how?
� -> One list (variable length) of key/value pairs, filled
(XtSetArg()), then passed into function. Order irrelevant.

� Event dispatch:
� Defined for most events in translation tables (I->A) in Xt
� -> Widgets handle events alone (no event loop in app)!
� App logic in callback functions registered with widgets

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 143

For Thursday

� Complete the Mac OS assignment by Wednesday
� Have a look at the X paper on the class web site
� We will meet in Meyer, then go over to Sweet Hall as

needed, to avoid missing each other in Sweet Hall.

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 144

Lecture 10

Thu, May 9, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 145

Widget Sets

� Collection of user interface components
� Together with WM, define look&feel of system
� Several different ones available for X

� Athena (original, simple widget set, ca. 20 widgets, 2-D, no
strong associated style guide) — Xaw... prefix

� Motif (Open Software Foundation, commercial, 2.5-D
widget set, >40 widgets, industry standard for X, comes with
style guide and UIL)—Xm... prefix

� Programming model already given in Intrinsics
� Motif just offers convenience functions

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 146

What Is Motif?

� Style Guide (book) for application developer
� Widget set (software library) implementing Style

Guide
� Window Manager (mwm)
� UIL (User Interface Language)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 147

The Motif Widget Set

� Simple Widgets: XmPrimitive
� XmLabel, XmText, XmSeparator, XmScrollbar,...

� Shell Widgets: Shell
� Widgets talking to Window Manager (root window children)
� Application shells, popup shells,...

� Constraint Widgets: XmManager
� Containters like XmDrawingArea, XmRowColumn,...
� Complex widgets like XmFileSelectionBox,...

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 148

Programming with Motif

� Initialize Intrinsics
� Connect to server, allocate toolkit resources

� Create widgets
� Building the dynamic widget tree for application
� Tell Intrinsics to manage each widget

� Realize widgets
� Sensitize for input, per default also make visible (map)

� Register callbacks
� Specify what app function to call when widgets are triggered

� Event loop
� Just call Intrinsics (XtMainLoop()) – app ends in some callback!

hello.c: A Simple Example

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xlib.h>
#include <Xm/Xm.h>
#include <Xm/PushB.h>

void ExitCB (Widget w, caddr_t client_data, XmAnyCallbackStruct *call_data)
{
 XtCloseDisplay (XtDisplay (w));
 exit (0);
}

void main(int argc, char *argv[])
{
 Widget toplevel, pushbutton;

 toplevel = XtInitialize (argv [0], "Hello", NULL, 0, &argc, argv);
 pushbutton = XmCreatePushButton (toplevel, "pushbutton", NULL, 0);
 XtManageChild (pushbutton);

 XtAddCallback (pushbutton, XmNactivateCallback, (void *) ExitCB, NULL);

 XtRealizeWidget (toplevel);
 XtMainLoop ();
}

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 150

Resource files in X
� Where does the title for the PushButton come from?
� -> Resource file specifies settings for application
� Syntax: Application.PathToWidget.Attribute: Value

� Resource Manager reads and merges several resource
files (system-, app- and user-specific) at startup (with
priorities as discussed in reference model)

File "Hello":

Hello.pushbutton.labelString: Hello World

Hello.pushbutton.width: 100

Hello.pushbutton.height: 20

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 151

User Interface Language UIL
� Resource files specify late refinement of widget

attributes, but cannot add widgets
� Idea: specify actual widget tree of an application

outside C source code, in UIL text file
� C source code only contains application-specific callbacks,
and simple stub for user interface

� UIL text file is translated with separate compiler
� At runtime, Motif Resouce Manager reads compiled UIL file
to construct dynamic widget tree for app

� Advantage: UI clearly separated from app code
� Decouples development

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 152

X/Motif: Evaluation

� Availability: high (server portability), standard WS for
Unix

� Productivity: low for Xlib-based and widget
development, but high using widget set, esp. Motif

� Parallelism: external yes, internal no - in original
design, one app can freeze server with big request

� Performance: fairly high (basic graphics were faster
than Windows on same hardware), widget sets add
graphical and layout overhead, but can hold client-side
resources

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 153

X/Motif: Evaluation

� Graphics model: RasterOp
� Style: exchangeable through widget set and WM

� Note: apps cannot rely on a certain WM functionality

� Extensibility: low
� Requires modifying Xlib source, usually also Xt and widget
set source, applications using extension not backwards
compatible and portable anymore

� Adaptability: very high (multiple resource files, UIL)
� Resource sharing: possible via RIDs
� Distribution: yes, BWS, WM & apps on different

machines CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 154

X/Motif: Evaluation

� API structure: Xlib procedural, Xt/widget set OO
� Graphics apps need to use both APIs!

� API comfort: high with Motif (even UIDS available)
� Independence: low with Xlib (visuals), high with

Motif
� Communicating apps: via RIDs in server for

resources, clipboard for text & graphics

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 155

Assignment

� Implement a simple Motif program, such as our
original ColorChooser example, or something similar
that you find interesting (due Tuesday)

� Tip: Use the interactive Xmtutor Motif tutorial
application (installed for you on the Leland systems)
for general information on Motif programming, and to
find out more about how to use the various widget
types in your application
� http://www.stanford.edu/~borchers/xmtutor/

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 156

Lecture 11

Tue, May 14, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 157

Java: AWT

� AWT: Abstract Windowing Toolkit
� Java's original window and graphics system

� Even Swing is based on AWT

� Developed originally in about 6 weeks for Java 1.0 ...
� Each widget has its own operating-system level

window (heavyweight widgets)
� Swing widgets do not have their own OS-level window, and
get drawn by their container (lightweight widgets)

� Swing uses AWT containers to render its toplevel widgets

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 158

AWT: Architecture

� Java is not a complete OS
� No OS-level Window

Manager
� Applications use the AWT for

graphical input and output
� The AWT works on top of the

Java Virtual Machine (JVM)

BWS
GEL
HW

UITK
Apps

JVM

WM AWT

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 159

Applets vs. Applications

� Java offers two types of GUI programs:
� Applets

� run inside a web browser using a plugin
� are embedded into an HTML page

� <APPLET CODE="myApplet.class">
� have limited access to the underlying OS (sandbox)
� are subclasses of Applet

� Applications
� run as standalone executables, with (almost) full OS access
� are subclasses of Frame

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 160

Minimum Applet: MyApplet.java

import java.applet.Applet;
import java.awt.*;
public class myApplet extends Applet {

public void paint(Graphics g) {
g.drawString("Hello World!", 60,100);

}}

Embed into HTML page:
<html>
<body>
<applet code="myApplet.class" width=300

height=200>Alternate text</applet>
</body>
</html>

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 161

The AWT Widget Hierarchy
� Component

� Button
� Canvas
� Checkbox
� Choice
� Container

� Panel
� ScrollPane
� Window

� Dialog
� FileDialog

� Frame
� Label
� List
� Scrollbar
� TextComponent

� TextArea
� TextField

� MenuComponent
� MenuBar
� MenuItem

� CheckboxMenuItem
� Menu

� PopupMenu

Other interesting AWT classes:
� MenuShortcut
� Event
� EventQueue
� Font
� FlowLayout, CardLayout...

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 162

The Component Class

� Parent class for all things to see and interact with on-
screen (except for menus: MenuComponent)

� Over 150(!) methods
� From getWidth() to addMouseMotionListener()

� See (general pointer for all documentation):
http://java.sun.com/j2se/1.3/docs/api/java/awt/Component.html

(We are using 1.3.1)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 163

Event Model

� Original model: action() method of toplevel widget
(e.g., Applet) would receive and handle all events
� Became huge method for large apps; inefficient

� Since Java 1.1: Delegated event handling
� Must register for events to receive them, by implementing an
event listener interface
� Examples: ActionListener (for button clicks),
MouseListener, MouseMotionListener, WindowListener
(when window is activated, iconified,...), etc.

� Smaller, dedicated listener methods, better performance

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 164

Event Model
� EventListeners receive event of corresponding type

� ActionEvent, MouseEvent, WindowEvent,...
import java.awt.*;
public class Hello extends Frame implements ActionListener {
 public static void main(String argv[])
 {

new Hello();
 }

 public Hello() {
Button myButton = new Button("Hello World");
myButton.addActionListener(this);

add(myButton, "Center");
setSize(200, 100);
setLocation(200,200);
setVisible(true);

 }
 public void actionPerformed(ActionEvent e) {

exit(0);
 }
}

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 165

Overview of Swing Components
(David)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 166

Lecture 12

Thu, May 18, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 167

Some Swing Examples (David)

� Toolbar sample app
� Tabbed pane sample app
� Table sample app

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 168

Java’s Evolution

� Java’s evolution with respect to its GUI and media-
handling features looks like a fast-forward replay of
the history of window systems:
� Java 1.0 (1995): 6-week version of AWT
� Java 1.1: Delegated event model, localization
� Java 2, v.1.2: JFC (Swing, Java2D, Accessibility,
Drag&Drop), audio playback

� Java 2, v.1.3: audio in, MIDI, Timer (for UI, animations,
etc.)

� Java 2, v.1.4 (2002): full-screen mode, scrollwheels,
Preferences API

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 169

Java: Evaluation

� Availability: high (binary portability), better for AWT
� Productivity: medium with AWT, high with Swing
� Parallelism: external yes, internal depends on OS
� Performance: medium (bytecode interpretation of

class files), memory and perfomance tradeoffs
between AWT (native widgets) and Swing (simulated
widgets)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 170

Java: Evaluation
� Graphics model: RasterOp

� Java2D offers vector model, but it is not used by the WS
� Style: native like the OS (AWT), pluggable-simulated (Swing)

� Note: Window Manager is supplied by the OS
� Extensibility: medium

� New widgets can be subclassed easily, but adding features to the
underlying WS is not intended (e.g., no support for input devices other
than mouse and keyboard)

� Adaptability: fairly high (with Swing)
� Developers can implement new look&feel, and switch it at runtime
� ResourceBundles can store resources (typically, texts and icons for

different languages), similar to Mac OS resource forks
� But: geared towards localization; no combination of multiple files; no user

access intended (not a clear-text format)
� Resource sharing: depends on core OS
� Distribution: no (nowadays, distributing objects is more common)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 171

Java: Evaluation

� API structure: purely OO
� API comfort: high, esp. with Swing (3rd-party UIDSs

available)
� Independence: high (class concept), esp. with Swing

(supports MVC)
� Communicating apps: clipboard for text & graphics,

drag&drop (from Java apps to and from other Java
and native apps),

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 172

Lecture 13

Tue, May 21, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 173

Mac OS X

� OS: Unix
� Unix Mach microkernel (Darwin, open source)

� -> Protected memory, preemptive multitasking
� -> Single application cannot corrupt/freeze entire system

� Graphics library (“Quartz”): Display PDF
� Roots: NeWS (Display PostScript)
� Vector-based

� UITK: Cocoa
� OO framework
� Written in Objective-C, but interfaces to Java, C, and C++
� Implements Aqua Look&Feel

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 174

Mac OS X: Architecture

BWS
GEL

HW

UITK
Apps

WM

Quartz Core Graphics Services (pixmap)
Quartz Core Graphics Rendering (vector), OpenGL, QuickTime!
Finder (user-level process)
Cocoa (, Carbon, JDK, Classic)

Apple’s Layer Model of Mac OS X

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 175

Apple’s Layer Model of Mac OS X

� Cocoa is the “native” API (can be used with Obj-C or Java)
� JDK is used for 100% Java/Swing applications
� Carbon is an updated version of the old Macintosh Toolbox

� Used to easily port existing applications, Carbon apps run on 9&X
� Classic emulates Mac OS 9 to run old apps unmodified
� BSD is used to run existing standard Unix applications
� -> Mac OS X tries to please everyone (at the expense of high cost for

supporting multiple APIs)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 176

Event Handling

� Similar to our
Reference Model
� Window Server
distributes events to
per-application
(really per-process)
queues

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 177

Objective-C

� Implementation language of the Cocoa framework
� Created in 1983 to combine OO principles with C
� In its concepts very similar to Java, unlike C++
� Dynamic typing, binding, and linking
� Introduces new constructs to C

� [object message:par1 par2:type2] is analogous to Java’s
object.method(par1, par2)

� - for instance methods, + for class methods
� id corresponds to void *, self corresponds to this
� @ compiler directives (@interface..@end,

@implementation..@end,…)
� Protocols are analogous to Java’s interfaces
� Classes are objects of type Class

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 178

Dynamic Typing, Binding, and
Linking

� C++ is a static language, Java and Obj-C are dynamic
� C++: Cannot use a superclass (eg TObject) as a subclass (eg
TShape) even though you know you could; the compiler
prevents such code from building

� Obj-C & Java move this check to run-time
� In C++, a superclass must either contain all the methods any
subclass will use, or it must be mixed in using multiple
inheritance. To add a method to the superclass, all subclasses
must be recompiled (fragile bass class problem)

� Dynamic Binding avoids bloated superclasses and minimizes
recompilation due to this problem

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 179

Cocoa
� The UITK of Mac OS X

� Evolved out of NeXTSTEP (which was released in 1987–just four
years after the Macintosh was introduced–, and which later became
OPENSTEP)

� Cocoa’s class names still give away its heritage (NSObject,…)
� Two main parts

� Foundation: Basic programming support
� NSObject, values, strings, collections, OS services, notifications,
archiving, Obj-C language services, scripting, distributed objects

� AppKit: Aqua interface
� Interface, fonts, graphics, color, documents, printing, OS support,
international support, InterfaceBuilder support

� Largest part (over 100) are interface widgets
� Complex hierarchy, see Online Help in Project Builder

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 180

Cocoa Class Hierarchy

NSObject
NSEvent
NSResponder

NSWindow
NSView

NSControl
NSButton etc.

NSApplication
NSCell (lightweight controls)
NSMenu
NSMenuItem
etc.

� Fairly flat hierarchy
� Reason: Delegates and

protocols can be used to mix
in functionality, no deep
subclassing required

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 181

Responders, Events, Actions,
Outlets

� Events generated by user or system (eg periodic events)
� Actions are generated by objects (eg menus) in response to lower-level

events
� InterfaceBuilder lets developer connect actions to custom objects (e.g.,

from a button to a custom class), using “IBAction” constant in the source
� Most objects are subclasses of NSResponders and can respond to

events
� In static frameworks (e.g., those based on C++), each object needs large

switch statement to determine if it can handle an event
� In Cocoa (dynamic framework), NSApplication can find a responder that

can handle an event (respondsToSelector), then call its method directly
� Framework takes care of Responder Chain

� Events are passed on along the responder chain (key window � main
window � application) until they can be handled by some object

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 182

Responders, Events, Actions,
Outlets

� In each step of the responder chain, a delegate can be
given a chance to handle the event
� Applications, windows, views etc. can be extended by
adding a delegate without having to subclass them

� Outlets are instance variables to refer to other objects
� InterfaceBuilder knows about them and lets the developer
connect outlets graphically (“IBOutlet” constant)

� Example: A custom class that wants to display a result in a
text field needs an outlet

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 183

Interface Builder
� Graphical tool to create user interfaces for Cocoa applications
� Allows developer to not just visually define the widgets in a UI (i.e.,

specify the static layout of the user interface–which is what most UIDS
support), but also define the connections between widgets and custom
classes of the application that is being written (i.e., the dynamic
behavior of the user interface)
� UI can be tested inside IB without compiling or writing any code

� Tied into development environment (Project Builder)
� Suggests a more user-centered implementation process that starts with

the user interface, not the application functionality
� IB generates source code skeleton that can then be filled in
� IB uses special constants to include hints about outlets and actions in the

source code
� Resources are stored in nib files (NeXTSTEP Interface Builder)

� An application reads its main nib file automatically when it starts up
� Additional nib files can be read when needed (for transient dialogs, etc.)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 184

Interface Builder: Example

The user input in an NSTextField is connected to the convert()
method of a custom TempController class in an application.

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 185

Mac OS X: Evaluation

� Availability: medium (only on Apple hardware)
� Productivity: very high, but learning curve (Cocoa framework)
� Parallelism: external yes, internal yes
� Performance:

� High with Obj-C
� Medium-high with Java (uses Java Bridge)

� Graphics model: Vector
� Latest version is moving to an all-OpenGL rendering engine
� -> Transparency etc. done in hardware, for desktop and all

applications

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 186

Mac OS X: Evaluation
� Style: native (Aqua)

� Computationally expensive (less so when using OpenGL, see above)
� Extensibility: fairly high (due to dynamism)

� New widgets can be subclassed, delegates can often help avoid
subclassing

� Adaptability: fairly high
� plists store application settings in clear-text XML files (similar to XML)
� Applications are bundles (directories) of binary code and resources (each

resource can be a Unix file)
� Resource sharing: yes
� Distribution: no

� Distributing objects is more common
� Cocoa: serialization and Connection mechanisms

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 187

Mac OS X: Evaluation

� API structure: OO with dynamic binding
� API comfort: high

� Interface Builder UIDS enables developer to specify not only static
widget layout, but also dynamic app structure

� Independence: high (class concept, MVC)
� Communicating apps:

� Pastboard for fonts, rulers, text, drag&drop data, other objects:
mostly handled automatically by the framework

� Services to export functionality to other apps (“Mail text”)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 188

Assignment

� Work through the Java Temperature Converter
tutorial
� Local copy on Mac OS X machines:
/Developer/Documentation/Essentials/devessentials.html

� On the web:
http://developer.apple.com/techpubs/macosx/Cocoa/
JavaTutorial/javatutorial.pdf

� Just work through chapters 1 and 2; you will complete a
simple Cocoa Java application, and will use Interface
Builder to connect the interface to your code.

� Complete by Thursday, then submit the final product to our
website after David is back.

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 189

Lecture 14

Thu, May 23, 2002

(Guest Lecture: Brad Johanson)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 190

The Post-Desktop Interface

� Enhanced Desktop
� Add voice recognition, video, audio, etc.

� Different Devices
� PDAs, Cell Phones, Wearable PCs

� Different Modalities
� Voice, tactile feedback, etc.

� Multi-Device Interfaces
� Ubiquitous computing, smart spaces, interactive workspaces

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 191

Ubiquitous Computing

� Originated with Mark Weiser, “The Computer for the
21

st
 Century,” 1991.

� Main Concept:
� Computing technology will become part of the background.
� We will be able to maintain only a peripheral awareness

� Has come to also mean:
� Any sort of multi-device interactions that integrate with
daily life

� Also called “Pervasive Computing.”

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 192

Principles for Ubiquitous
Computing

� Boundary Principle
� Volatility Principle
� Semantic Rubicon

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 193

Room-based Ubiquitous Computing

� Basic Idea, one room for team collaboration with:
� Multiple devices, some permanent, some transient, some
mobile

� Multiple users collaborating
� Multiple applications

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 194

Some Characteristics

� Human Constraints
� Bounded Environment
� Human Centered Interaction

� Technological Constraints
� Heterogeneity
� Changing environment

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 195

Approaches

� Room OS: Make all devices look like one complex
virtual machine (i-Land, Darmstadt and Gaia OS,
UIUC)

� Intelligent Environment: Create an environment that
anticipates the users needs and does the right thing.
(Intelligent Room, MIT, Easy Living, Microsoft
Research)

� Meta Operating System: Allow pre-existing programs,
and develop new programs using devices own toolkits.
(Interactive Workspaces, Stanford)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 196

iROS

� A set of middleware infrastructure pieces
� Facilitates construction of apps for interactive

workspaces
� Facilitates recombining applications and devices in

new ways.

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 197

iROS Video

� <If not shown earlier by Jan>

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 198

iROS: Discovered Principles

� Moving Data
� Moving Control
� Dynamic Application Coordination

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 199

Event Heap

iCrafter

Data

Heap

Service

Invocation

Service

Discovery

State

Manager

Persistent Store Other APIsFile Stores

Interactive Workspace Applications

Application DevelopersStanford iROS Other InfrastructureKey:

iROS Component Structure

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 200

The Event Heap

� A digital environment to mirror the physical one
� Obey the boundary principle
� Give applications the means to:

� Notify other apps in the environment about changes in their
state

� Understand what other applications are doing.
� React to occurrences in the environment

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 201

How Things Work

Viewer 1

Controller

Viewer 2

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 202

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

PutEvent

String EventType “ViewChange”

String TargetDevice “FrontScreen”

Int ViewNumber *

waitForEvent

waitForEvent
String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

PutEvent

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

Event Heap Example
String EventType “ViewChange”

String TargetDevice “FrontScreen”

Int ViewNumber *

waitForEvent

waitForEvent
String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

String EventType “ViewChange”

String TargetDevice *

int ViewNumber 7

String EventType “ViewChange”

String TargetDevice “FrontScreen”

int ViewNumber 13

waitForEvent
String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice “FrontScreen”

Int ViewNumber *

waitForEvent

waitForEvent
String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice “FrontScreen”

Int ViewNumber *

waitForEvent

waitForEvent
String EventType “ViewChange”

String TargetDevice “SideScreen”

int ViewNumber *

String EventType “ViewChange”

String TargetDevice “FrontScreen”

Int ViewNumber *
getEvent

String EventType “ViewChange”

String TargetDevice *

Int ViewNumber 7

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 203

Event Heap: System Properties

� Extensible
� Expressive
� Simple and Portable Client API
� Easy to Debug
� Perceptual Instantaneity
� Scalable to workspace sized traffic load
� Failure tolerance
� Application portability

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 204

Event Heap: Design Choices

� Routing Patterns
� Opaque Communication and Data Format
� Logically Centralized
� Simple, General API

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 205

Event Heap: Important Capabilities

� Intermediation
� Snooping
� Routing

� By source
� By application
� By device
� By person
� By group

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 206

iCrafter

� Service Description
� Devices
� Interface Generation

� Interface database
� Room configuration database

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 207

iCrafter: Example

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 208

iROS: Evaluation

� Availability: high (Windows, Unix, Mac OS, easy portability)
� Productivity: high, but at the level of gluing large components
� Parallelism: by nature
� Performance:

� Medium (compared to direct socket connections)
� Graphics model: Underlying UI for platform, or via iCrafter

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 209

iROS: Evaluation
� Style: based on device
� Extensibility: very high due to flexible typing, snooping,

intermediation, and self description
� Adaptability: high (linking apps), dep on OSs (end user

config)
� Resource sharing: not inherent
� Distribution: inherently distributed (via central server)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 210

iROS: Evaluation

� API structure: mostly Java-based, but other APIs possible
� eheap: event creation, manipulation, placement and retrieval

� API comfort: simple, easy to learn, low level but powerful
� add a few lines to Java app to make it talk to the eheap

� Independence: high– designed to keep applications independent
� suggests different way of structuring UI code in an app

� Communicating apps: via Event Heap
� The main feature!

Event Heap Example App: speaktext
import iwork.eheap2.*;
class speaktext { // Connects to event heap in
 static void main(String []args) // arg[0], and sends an AudioEvent
 { // with the text in arg[1].
 try{
 EventHeap theHeap=new EventHeap(args[0]); // Connect to the Event Heap
 Event myEvent=new Event("AudioEvent"); // Create an event
 myEvent.setPostValue("AudioCommand", "Read"); // Set its fields
 myEvent.setPostValue("Text", args[1]);
 theHeap.putEvent(myEvent); // Put event into the Event Heap
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}}

Event Heap Example App: speaker
import iwork.eheap2.*;
import javax.speech.*;
import javax.speech.synthesis.*;

class speaker { // Speaks text received as AudioEvent from eheap
 static void main(String []args) {
 try {
 EventHeap theHeap=new EventHeap(args[0]); // Connect to the Event Heap
 Event myEvent=new Event("AudioEvent"); // Create the template event
 myEvent.setTemplateValue("AudioCommand", "Read"); // Capitalization does matter
 while(true) { // Loop forever retrieving
 try{
 Event retEvent=theHeap.waitForEvent(myEvent); // Block thread until a matching event arrives
 // You can also use this with a timeout,
 // or use GetEvent which returns immediately
 simpleSpeak((String)(retEvent.getPostValue("Text"))); // Get text to speak out of event and say it
 }
 catch(Exception e) { // Catch malformed events to keep looping
 e.printStackTrace();
 }
 } // End of loop getting events
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 } // End of main()

 private static void simpleSpeak(String phrase) { // Uses Java Speech library to speak text phrase;
 SynthesizerModeDesc mode = new SynthesizerModeDesc(); // has nothing to do with the Event Heap
 Synthesizer synth = Central.createSynthesizer(mode);
 synth.allocate(); // Get ready to speak
 synth.resume();
 synth.speakPlainText(phrase, null); // Speak the phrase
 synth.waitEngineState(Synthesizer.QUEUE_EMPTY); // Wait until speaking is done
 }
}}

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 213

Lecture 15

Tue, May 28, 2002

(Guest: Merrie Ringel)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 214

Review

� iROS: iRoom Operating System
� Meta-OS to glue together apps in an interactive room
� Implements Event Heap (similar to event queue on a

single machine); simple Java API
� But: more robust against failure (important in rooms)

� Events expire, services continuously beacon their
availability

� Mostly infrastructure-oriented, but important
implications for HCI
� See iStuff (today) for an example

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 215

iStuff

� Interactive Stuff: a physical UI toolkit
� Motivation:

� Make prototyping physical post-desktop interfaces (for
ubiquitous computing) as simple as prototyping GUIs

� Solution:
� Build on Event Heap (assume rich infrastructure)
� Create lightweight physical standard UI components

� buttons, lights, sliders, speakers, buzzers, ...
� Combine with peer functionality in a PC to create iStuff
device

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 216

iStuff taxonomy

� Similar to Card's Design Space of Input Devices
� One vs. many bits vs. discrete

� But: Additional dimensions
� Input vs. output devices
� Modality (force, heat, light, sound,...)
� See
http://www.stanford.edu/~merrie/istuff/device_table.html

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 217

Accessing iStuff

� From Java code
� Any eheap app can use iStuff without further libraries
� Sending and receiving events between apps and iStuff
� Main challenge: Abstraction and paradigm shift

� Layer model (similar to WS reference model)
� From device-specific, to generic, to application-specific
device semantics (example: date slider)

� iStuff-savvy applications need to receive input from multiple
sources (one solution: receive all input just from eheap), and
deal with multiple concurrent input (from one or more users)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 218

iStuff Layer Model
(Example: iButton)

Event Heap Library

Event Heap Server

Application
Event Heap Library

PC daemon
Parallel port driver

RF transmitter
 Conceptual
 iStuff "device"

actual wireless
iButton

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 219

Examples

� iButton
� RF garage door opener style button
� RF receiver with parallel port interface
� PC daemon creates eheap events from button presses
� Other apps can listen for button events with specific IDs

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 220

Examples

� iSpeaker
� PC with daemon waiting for speaker events
� Plays audio file (in URL field of event) to sound card
� Line-out connected to small standard radio transmitter
� iSpeaker is a simple portable radio!
� Simple extension: New event type to speak text, ASCII text
read by PC text-to-speech software, and played back as
above

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 221

iStuff: Evaluation
� Availability: high (blueprints available, cross-platform)
� Productivity: higher than building custom physical UIs
� Performance: low (eheap and JVM delays)
� Style: physical, custom designs possible
� Extensibility: high (design your own hardware, or use off-

the-shelf components, to add new devices)
� API structure: eheap (Java as default)
� API comfort: easy to learn, but still similar to "first-

generation" event handling models of window systems
� Independence: medium (need "patch panel" abstractions)
� More information:

http://www.stanford.edu/~borchers/istuff/
CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 222

Lecture 16

Thu, May 30, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 223

Review: iStuff

� Toolkit of physical user interface components
� Make prototyping physical UIs as convenient as

prototyping GUIs

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 224

The DIA Cycle
Design

Prototype/
Implement

Analyze/
Test/

Evaluate

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 225

DIA Iterations
� What changes with each iteration?

� Higher fidelity of prototype
� Finer granularity of user feedback

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 226

UIDS/UIMS

� User Interface Design Systems
� Create UI visually or in language
� Look (static layout)

� User Interface Management Systems
� Specify run-time behavior as well as visual layout
� Adds specification of Feel (dynamic behavior)

� Boundaries are blurred

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 227

Prototyping Tools: Paper-Based
� Scenario, storyboard, paper prototype, Post-It prototype
� Crudest forms, used in first DIA cycles
� Provide best initial feedback
� Problem: Hard to reuse or adapt to feedback (throw-away)

Gayle Curtis

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 228

Prototyping Tools: Graphics apps
� Photoshop & Co.
� Allow for visual detail and quality
� Easy to reuse and change
� Drawings can become part of actual UI

� More useful for non-standard GUIs

� Easy to distribute electronically
� Simple interactivity with help of an operator

� Enable/disable layers,...

� Danger of looking too polished
� Limits feedback, suggests the interface is "done"

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 229

Prototyping Tools:
Presentation apps

� PowerPoint & Co.
� More potential for interactivity

� Timing
� Animation
� Simple Controls

� Can be used for pitching, or as clickthrough prototype
� Easy to change, and distribute (if standard application)
� Good for non-standard UIs
� No programming skills needed

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 230

Prototyping Tools: Animation apps
� Director, Flash, LiveMotion & Co.
� Usually implement timeline metaphor
� Good for intricate animations

� Pixel-based (Director): Maximum control over appearance
� Vector-based (Flash, LiveMotion): Smaller files, editable objects

� Powerful when extended with scripts
� But: Scripting languages are clumsy by CS standards

� May allow for integration of non-standard hardware and other
OS features (Director Xtras,...)

� Can even become final product
� Virtual Vienna, Flash web content,...

� Distribution usually fairly easy (free player apps)
� But: Large designs become hard to manage

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 231

Prototyping Tools: Web

� DHTML=HTML+JavaScript etc.
� Natural choice for web interface design

� Can become final product

� Ubiquitous
� Many tools (DreamWeaver, FrontPage,...)
� Clear-text-format
� Viewable in any browser (in theory...), over the net
� But: No precise look&feel (nature of the web)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 232

JavaScript Example
<head>

<script language="JavaScript">
<!--

function square(i) {
document.write("Parameter is ", i,
)
return i*i

}
document.write ("Square of 5 is", square(5), ".")

-->
</script>

</head>
<body>

All done.

</body>

What's the output?

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 233

Prototyping Tools:
Rapid Development Environments

� VisualBasic, Delphi, RealBasic, Tcl/Tk etc.
� Good for standard GUIs (create standard look&feel)
� Often become final product
� Partly interpreted

� Quick development cycle, but potential performance issues
� Distribution: OK

� Not always cross-platform
� May require specific runtime environment

� RealBasic at WWDC 2002:
� "40% of tools on VersionTracker are done in RealBasic"
� (But then, 40% of tools on VersionTracker s**k...)

� "Programming for the rest of us" (empowers users)
CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 234

Prototyping Tools: Special-Purpose

� Example: MAX
� Multimedia development
environment

� Originally for MIDI applications
� Extended to include graphics, audio, and video
� Build applications by connecting "patchers" that process
incoming data

� Very helpful for specific type of applications (e.g., MIDI
processing, such as interactive music systems)

� Can be used for end products (WorldBeat)
� Distribution: Free player, but platform-bound

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 235

Tcl/Tk In Depth (David)

� See also David's materials online
� Homepage for everything Tcl/Tk:

http://www.scriptics.com/
� Tcl/Tk assignment: See online handout

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 236

Summary: Prototyping Tools

� Spectrum of tools
� From low- to high-fidelity in graphics (look)
� From low- to high-fidelity and complexity in interactive
behavior (feel)

� From platform-specific to cross-platform

� Choice depends on design stage, target platform,
application type, and familiarity/learning curve

� Winograd's Law: Use the tool that someone you know
is familiar with :)

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 237

Lecture 17

Tue, June 4, 2002

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 238

Tcl/Tk: Complex Interface Example

CS377A: A Programming Approach to HCI • Jan Borchers • Spring 2002 239

The End

� Course Review
� Q&A
� Feedback

� Finals
� Written short exam on Wed Jun 12
� Topics are only what's covered in this slide set

Thanks for participating!

