Andy Kuo HW3
CS377C 5/1/01

HASH TABLE**

There are many computer gpplications that require storage of a number of
OBJECTS. In addition, the following operations are required on this st of objects: INSERT,
SEARCH, and DELETE. That is, it must be possible to add, find, and remove objectsfrom
thissat. Asaways, EFFICIENCY isakey concern. One particularly efficient way of
accomplishing this is described in the pattern bel ow.

* * %

Many computer applicationsrequire efficient storage, insertion, search, and
deletion of individual elementsfrom a set.

A hash tableis an efficient solution to this problem. Essentidly, ahashtableisa
collection of key-vaue pairs. The value of the pair is the element or object you want to
dore; it can be anything: a number, aword, and even complex objects. The key of each
pair is something uniquely associated with the corresponding vaue. Thet is, given any
key, it is possible to tell exactly what vaue it correspondsto.

Even though this description sounds technica, you actudly use a hash teblein the
red world quite often: the dictionary. The vaues, or objects being stored, are definitions.
The keys, the accessors to those objects, are the words themsalves. Thus, given any
word, it is possible to locate its associated definition. A hash tableissmply a
generdization of thisprinciple. Aswe continue to examine the properties of hash table, |
will show how the principles gpply in the dictionary example.

How do the keys allow access to the values? That iswhere “hashing” comesin.
Given an input, a hashing function manipulates it somehow, and produces a unique
output. In the case of computer programs, the key is hashed, and the resulting output isa
unique index number that tells the program where to find the associated value. Thereis
no direct corollary with the real-world dictionary, but we can make one up. Suppose
aong with every dictionary came adevice. Y ou can enter into the device the word you
arelooking for, and it will tel you exactly what page and line number to find it. That
deviceisthe equivaent of the hashing function.

All hash tables share the following properties.

1. Hash tables are mogt effective The number of English wordsin the
when the number of keys actudly dictionary is much smaller than the
gored is smdl relative to the tota total number of possible
number of possible keys, for combinations of |etters.
various technica reasons.

Andy Kuo HW3

CS377C 5/1/01
2 Idedlly, the hash function only Many words in the English
associates one value with each dictionary have only one definition,
key. However, it ispossbleto although there are also many
get away with associaing afew words with multiple definitions.
vaues with afew keys.

3. Hashing functions should be fast, The hypothetical device we
for obvious reasons. invented before should be fast.

As dated above, theided case is when one exactly one vaue is associated with
eech key. Inpractice, thisisfarly difficult to achieve. When more than onevaueis
associated with each key, the result isacollison. There are anumber of techniques,
described in other patterns, of dedling with collisons.

Therefore:

Use hash tablesto facilitate quick insertion, search, and deletion of values
from aset. Values can be anything: numbers, words, or even complex objects.
Each value should be uniquely identified by a key. Thekey in theory can be
anything, but in practiceis usually something fairly smpleto manipulate, such asa
number or astring. A hashing function, when applied to the key, will yield the
location of the value. I1n addition, the function will do so quickly i.e. does not
require a prohibitive amount of calculation. Finally, the hashing function must be
determinigtic. That is, given the samekey, it should alwaysyield the samelocation
of the associated value.

keya

value,
— /

keyp

fundtion \ .. > valu &

k e \
e * value

The particulars of implementing hash tables are not described here. Choose good
HASHING FUNCTIONS. To ded with collisons, consder usng CHAINING....

