
A Pattern Approach to Interaction Design

Jan O. Borchers
Department of Computer Science

Darmstadt University of Technology
Alexanderstr. 6, 64283 Darmstadt, Germany

jan@informatik.tu-darmstadt.de

ABSTRACT
To create successful interactive systems, user interface de-
signers need to cooperate with developers and application
domain experts in an interdisciplinary team. These groups,
however, usually miss a common terminology to exchange
ideas, opinions, and values.

This paper presents an approach that uses pattern languages
to capture this knowledge in software development, HCI,
and the application domain. A formal, domain-independent
definition of design patterns allows for computer support
without sacrificing readability, and pattern use is integrated
into the usability engineering life cycle.

As an example, experience from building an award-winning
interactive music exhibit was turned into a pattern language,
which was then used to inform follow-up projects and sup-
port HCI education.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g.,
HCI)]: User Interfaces—style guides; theory and methods;
training, help, and documentation; user-centered design;
H.5.5 [Information Interfaces and Presentation (e.g.,
HCI)]: Sound and Music Computing—modeling, systems;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—user interfaces

General Terms
Design, Human Factors, Documentation

Keywords
Pattern languages, design methodologies, interdisciplinary
design, music, exhibits, education

1. INTRODUCTION
To design systems that fulfil today’s high expectations con-
cerning usability, human-computer interaction (HCI) ex-

To appear inProceedings of the DIS 2000 International Con-
ference on Designing Interactive Systems (August 16–19,
2000, New York), ACM Press, New York, 2000. See the conference
proceedings, online at http://www.acm.org/dl/, for the definitive version.
Copyright ACM. Posted by permission. Do not redistribute.

perts need to work together very closely with team members
from other disciplines. Most notably, they need to coop-
erate with application domain experts to identify the con-
cepts, tasks, and terminology of the product environment,
and with the development team to make sure the internal
system design supports the interaction techniques required.

However, these disciplines lack a common language: It is
difficult for the user interface designer to explain his guide-
lines and concerns to the other groups. It is often even
more problematic to extract application domain concepts
from the user representative in a usable form. And it is
hard for HCI people, and for application domain experts
even more so, to understand the architectural and techno-
logical constraints and rules that guide the systems engineer
in her design process. In general, people within a discipline
often have trouble communicating what they know to out-
siders, but to work together well, disciplines must learn to
appreciate each other’s language, tradition, and values [23].

1.1 Pattern Languages as lingua franca
Simply stated, a pattern is a proven solution to a recurring
design problem. It pays special attention to the context in
which it is applicable, to the competing “forces” it needs to
balance, and to the positive and negative consequences of
its application. It references higher-level patterns describ-
ing the context in which it can be applied, and lower-level
patterns that could be used after the current one to further
refine the solution. This hierarchy structures a comprehen-
sive collection of patterns into a pattern language.

The central idea presented here is that HCI, software engi-
neering, and application domain experts in a project team
each express their expertise in the form of a pattern lan-
guage. This makes their knowledge and assumptions more
explicit, and easier for the other disciplines to understand
and refer to. Such a common vocabulary can greatly im-
prove communication within the team, and also serve as a
corporate memory of design expertise.

The next section briefly explains the concept and history of
pattern languages. A critical component of these languages,
however, are the cross-references that help readers find their
way through the material. To facilitate creating and navi-
gating through patterns, possibly with computer support, a
formal syntactic definition of patterns and their relations is
presented that is independent of the domain they address.
It is also shown where in the usability engineering life cycle
patterns can be applied.

1

The final section shows a pattern language for interactive
music exhibits as an example, and summarizes some initial
empirical studies about the usefulness of pattern languages
in HCI courses.

2. A BRIEF HISTORY OF PATTERN LAN-
GUAGES

This section briefly outlines where the pattern idea comes
from, and how it has been adapted to other disciplines.

2.1 Patterns in Urban Architecture
The original concept of pattern languages was conceived by
architect Christopher Alexander in the 1970’s. In [2], he
explains how a hierarchical collection of architectural de-
sign patterns can be identified to make future buildings and
urban environments more usable and pleasing for their in-
habitants. In [3], he presents 253 such patterns of “user-
friendly” solutions to recurring problems in urban architec-
ture. They range from large-scale issues (“community of

7000”, “identifiable neighbourhood”), via smaller-scale
patterns (“promenade”, “street cafe”) down to patterns
for the design of single buildings (“cascade of roofs”,
“intimacy gradient”). Finally, in [4], the architect uses
his pattern language to define a new planning process for
the University of Oregon as an example.

It is less known that Alexander’s goal in publishing this pat-
tern language was to allow not architects, but the inhabi-
tants (that is, the users) themselves to design their environ-
ments. This is strikingly similar to the ideas of user-centered
and participatory design, which aim to involve end users in
all stages of the software development cycle.

Pattern languages essentially aim to provide laymen with a
vocabulary to express their ideas and designs, and to discuss
them with professionals. This idea of creating a vocabulary
implements well-known results from psychological research
about verbal recoding : “When there is a story or an argu-
ment or an idea that we want to remember [. . .], we make
a verbal description of the event and then remember our
verbalization” [24]. The idea can be recalled when its short
name is remembered.

Each of Alexander’s patterns is presented as several pages of
illustrated text, using a very uniform structure and layout
with the following components [3, p. x]:

A meaningful, concise name identifies the pattern, a ranking
indicates the validity of the pattern, a picture gives a “sen-
sitizing” and easily understood example of the pattern ap-
plied, and the context explains which larger patterns it helps
to implement. Next, a short problem statement summarizes
the competing “forces”, or design tradeoffs, and a more ex-
tensive problem description gives empirical background in-
formation, and shows existing solutions.

The following solution is the central pattern component. It
generalizes the examples into a clear, but generic set of in-
structions that can be applied in varying situations. A dia-
gram describes this solution and its constituents graphically,
and references point the reader to smaller patterns that can
be used to implement this pattern.

It must be stressed that Alexandrian patterns are, above
all, a didactic medium for human readers, even (and espe-
cially) for non-architects. This quality must not be lost in a
more formal representation or extension of the idea to other
domains.

2.2 Patterns in Software Engineering
Around 1987, software engineering picked up the pattern
idea. At the OOPSLA conference on object-orientation,
Beck et al. [8] reported on an experiment where application
domain experts without prior Smalltalk experience success-
fully designed their own Smalltalk user interfaces after they
had been introduced to basic Smalltalk UI concepts using a
pattern language. It is interesting to note that this first soft-
ware pattern experiment actually dealt with user interface
design, and user participation.

The workshop started a vivid exchange about software de-
sign patterns. An influential collection of patterns for
object-oriented software design was published by Gamma
et al. [18]. The annual Pattern Languages of Programming
(PLoP) conferences have established an entirely new forum
to exchange proven, generalized solutions to recurring soft-
ware design problems.

The overall format of a pattern has not changed very much
from Alexander to, e.g., Gamma et al. [18]: Name, context,
problem, solution, examples, diagrams, and cross-references
are still the essential constituents of each pattern.

The goals, however, have changed in an important way,
without many noticing: Software design patterns are con-
sidered a useful language for communication among soft-
ware developers, and a practical vehicle for introducing less
experienced developers into the field. The idea of end users
designing their own (software) architectures, has not been
taken over. On the one hand, this makes sense, because
people do not live as intensely “in” their software applica-
tions as they live in their environments. On the other hand,
though, a good chance to push the concept of participatory
design forward by introducing patterns has not been taken
advantage of. This was one of the reasons why, at OOP-
SLA’99, the authors of that book were put before a mock
“trial” for their work. (See the article by Tidwell [31] for an
interesting comment.)

2.3 Patterns in HCI
The pattern idea has been referenced by HCI research earlier
than most people expect. Norman and Draper [28] mention
Alexander’s work, and in his classic Psychology of Everyday
Things [27, p. 229], Norman states that he was influenced
particularly by it. Apple’s Human Interface Guidelines [5]
quote Alexander’s books as seminal in the field of environ-
mental design, and the Utrecht School of Arts uses patterns
as a basis for their interaction design curriculum [6].

But only recently a first workshop dedicated to pattern lan-
guages for interaction design took place within the HCI com-
munity. It showed that the ideas about adopting the pat-
tern concept for HCI were still very varied, and that “as yet,
there has been little attention given to pattern languages for
interaction design” [7]. The patterns reported by this work-
shop were necessarily not strictly design patterns, but rather

2

activity patterns describing observed behaviour (at the con-
ference), without judging whether these represented “good”
or “bad” solutions. Similarly to the Utrecht curriculum de-
signers [6], it identified the temporal dimension as making
interaction design quite different from architectural design.
The workshop also stressed the often underestimated fact
that patterns, to a large extent, represent the values of their
author, i.e., the qualities that the author considers impor-
tant in the artefacts he designs.

Subsequent workshops at UPA’99 [19], INTERACT’99 [11],
and at CHI 2000 [14] have confirmed the growing interest in
pattern languages within the HCI community, and helped
to more precisely shape the notion of HCI design patterns
and their use. A preliminary definition of HCI design pat-
terns, and suggestions for structuring HCI design pattern
languages, as well as a sample format of an HCI pattern,
were given at the INTERACT workshop. The CHI 2000
workshop refined these findings and definitions, and the pat-
tern idea has also been linked to other related concepts of
usability engineering, such as claims [29].

Meanwhile, a number of concrete pattern collections for in-
teraction design have been suggested. The language by Tid-
well [30], for example, covers a substantial field of user in-
terface design issues. Interaction design patterns have found
their way into the PLoP conference series, becoming even a
“hot topic” at the ChiliPLoP’99 conference [10].

Less research, though, has gone into formalizing pattern lan-
guages for HCI, to make them more accessible to computer
support. Even Alexander [3, p. xviii] admits that, “since
the language is in truth a network, there is no one sequence
which perfectly captures it”. The hypertext model of a pat-
tern language presented here makes it possible to create
tools for navigating through the language, similar to those
for interface design guidelines [1, 21].

2.4 Patterns in the Application Domain
Patterns have been a successful tool to model design ex-
perience in architecture, in software design (with the lim-
itations discussed here), and, as existing collections such
as [30] show, also in HCI. Other domains have been ad-
dressed by patterns as well. Denning and Dargan [16], in
their theory of action-centred design, suggest a technique
called Pattern Mapping as a basis for cross-disciplinary soft-
ware design. Referring to Alexander’s work, they claim that
patterns could constitute a design language for communica-
tion between software engineers and users, just as Alexan-
der’s pattern language does between builder and inhabitant.
Granlund and Lafrenière [20] use patterns to describe busi-
ness domains, processes, and tasks to aid early system defini-
tion and conceptual design. The authors also note the inter-
disciplinary value of patterns as a communications medium,
and the ability of patterns to capture knowledge from pre-
vious projects.

Indeed, there is no reason why the experience, methods, and
values of any application domain cannot be expressed in
pattern form, as long as activity in that application domain
includes some form of design, creative, or problem-solving
work. This brought the author to the idea that not only HCI
professionals and software engineers, but also application

domain experts, could express their respective experience,
guidelines, and values in the form of pattern languages.

The history of pattern languages in architecture, software
engineering, and especially HCI is described in more detail
in [12].

3. USING PATTERN LANGUAGES IN IN-
TERDISCIPLINARY DESIGN

The following sections give a general model of pattern lan-
guages, and show how to integrate those pattern languages
into the usability engineering process.

3.1 A Formal Hypertext Model of a Pattern
Language

A formal description of patterns makes it less ambiguous for
the parties involved to decide what a pattern is supposed to
look like, in terms of structure and content. It also makes
it possible to design computer-based tools that help authors
in writing, and readers in understanding patterns.

We first give a formal syntactic definition:

• A pattern language is a directed acyclic graph (DAG)
PL=(P,R) with nodes P = {P1, . . . , Pn} and edges
R = {R1, . . . , Rm}.

• Each node P ∈ P is called a pattern.

• For P, Q ∈ P : P references Q ⇐⇒ ∃R = (P, Q) ∈ R.

• The set of edges leaving a node P ∈ P is called its
references. The set of edges entering it is called its
context.

• Each node P ∈ P is itself a set P =
{n, r, i, p, f1 . . . fi, e1 . . . ej , s, d, } of a name n, ranking
r, illustration i, problem p with forces f1 . . . fi, exam-
ples e1 . . . ej , the solution s, and diagram d.

This syntactic definition is augmented with the following
semantics:

Each pattern of a language captures a recurring design
problem, and suggests a proven solution to it. The lan-
guage consists of a set of such patterns for a specific design
domain, such as urban architecture.

Each pattern has a context represented by edges pointing
to it from higher-level patterns. They sketch the design sit-
uations in which it can be used. Similarly, its references
show what lower-level patterns can be applied after it has
been used. This relationship creates a hierarchy within the
pattern language. It leads the designer from patterns ad-
dressing large-scale design issues, to patterns about small
design details, and helps him locate related patterns quickly.

The name of a pattern helps to refer to its central idea
quickly, and build a vocabulary for communication within a
team or design community. The ranking shows how uni-
versally valid the pattern author believes this pattern is. It
helps readers to distinuish early pattern ideas from truly

3

timeless patterns that have been confirmed on countless oc-
casions.

The opening illustration gives readers a quick idea of a
typical example situation for the pattern, even if they are
not professionals. Media choice depends on the domain of
the language: Architecture can be represented by photos of
buildings and locations; HCI may prefer screen shots, video
sequences of an interaction, audio recordings for a voice-
controlled menu, etc.

The problem states what the major issue is that the pat-
tern addresses. The forces further elaborate the problem
statement. They are aspects of the design that need to be
optimised. They usually come in pairs contradicting each
other.

The examples section is the largest of each pattern. It
shows existing situations in which the problem at hand can
be (or has been) encountered, and how it has been solved in
those situations.

The solution generalizes from the examples a proven way
to balance the forces at hand optimally for the given design
context. It is not simply prescriptive, but generic so that
it can generate a solution when it is applied to concrete
problem situations of the form specified by the context.

The diagram supports the solution by summarizing its
main idea in a graphical way, omitting any unnecessary de-
tails. For experts, the diagram is quicker to grasp than the
opening illustration. Media choice again depends on the do-
main: a graphical sketch for architecture, pseudo-code or
UML diagram for software engineering, a storyboard sketch
for HCI, a score fragment for music, etc.

With these definitions, a formal model for pattern languages
is in place. However, formalization must not impede read-
ability and clarity of the material. The process of writing
patterns should not be hindered by the formal notation, and
the results should still be accessible in a variety of formats,
including linear, printed documentation (which most people
still prefer for sustained reading for well-known reasons).
Each part of a pattern, and its connections to other pat-
terns, are usually presented as several paragraphs in the
pattern description (see, for example, [3]). Other media,
such as images, animations, audio recordings, etc., are used
to augment the pattern description as described above.

3.2 Using Patterns in the Usability Engineer-
ing Lifecycle

It is not necessary to follow a specific design method to use
this pattern language approach. As Dix et al. [17, p. 6] point
out, “ . . . probably 90% of the value of any interface design
technique is that it forces the designer to remember that
someone (and in particular someone else) will use the system
under construction.” Nevertheless, the design process must
emphasize usability, and therefore include programmers and
UI designers as well as end users [32, p. 57]. Also, as with
most usability methods [17, p. 179], patterns will not be
used in just a single design phase, but throughout the entire
design process.

A suitable process framework for this is Nielsen’s usability
engineering lifecycle model [26, p. 72]. Patterns fit into each
of the eleven activities that this model suggests:

1. Know the user. If the application domain of an in-
teractive software project involves some designing, creative,
or problem solving activity, then its concepts and methods
can be represented as a pattern language in the sense of the
above definition. The development team, after explaining
the basic idea of patterns to user representatives, can begin
eliciting application domain concepts in the form of patterns
from those experts. Those patterns do not need to be perfect
in terms of their timeless quality. They just give a uniform
format to what needs to be captured anyway, but explicitly
stating problems, forces, existing solutions, and references
within these “work patterns”. Also, patterns for user inter-
face and software design will have the same format, making
all the material more accessible to all members of the design
team, and helping users to recognize their work patterns in
user interface concepts of the end product.

2. Competitive analysis. Here, existing products are
examined to gather information and hints for the design
of the new system. The internal architecture of competing
products is usually not accessible, but user interface design
solutions of successful competing systems can be generalized
into HCI design patterns for the new product.

3. Setting usability goals. The various aspects of usabil-
ity, such as memorability, and efficiency of use, need to be
prioritized. They can, however, be used as forces of abstract
HCI design patterns which explain how these forces conflict,
and how this conflict is to be solved for the current project.
A design for a system used intensively by expert users, for
example, will put the balance between the above goals more
towards efficiency of use.

4. Parallel design. Several groups of designers can de-
velop alternative user interface prototypes to broaden the
“design space” explored. HCI design patterns can serve as a
common ground, working as design guidelines to ensure that
the usability goals from the last phase are fulfilled. These
patterns can also come from external sources such as HCI
design books.

5. Participatory Design. This technique involves user
representatives, or application domain experts, in the de-
sign process to evaluate prototypes, and participate in de-
sign discussions. These users will have few problems under-
standing the pattern language of their application domain
(which they have probably helped to create themselves).
But knowing this format will also help them understand the
HCI patterns that the user interface design team has col-
lected, and which represents their design values, methods,
and guidelines. Conversely, the UI design team can use the
application domain pattern language to talk among them-
selves and to users about issues of the application domain,
in a language that users will find resembles their own termi-
nology. A common vocabulary for users and user interface
designers emerges from the combination of both languages.

6. Coordinated design of the total interface. Coor-
dinated design aims to create a consistent interface, docu-

4

mentation, online help and tutorials, both within the current
and with previous versions of this and other products within
a product family. HCI design patterns, especially those ad-
dressing lower-level, concrete design guidelines, can serve as
vocabulary among design teams, to help ensuring this con-
sistency. Of course, additional methods such as dictionaries
of user interface terms are required to support this process.

7. Apply guidelines and heuristic analysis. Style
guides and standards are the ways to express HCI design ex-
perience that are closest to HCI design patterns. Patterns
can improve these forms through their structured format
and contents, combination of concrete existing examples and
a general solution, and an insightful explanation not only of
the solution, but also of the problem context in which this
solution can be used, as well as the structured way in which
individual patterns are integrated into the hierarchical net-
work of a pattern language. This coverage of multiple layers
of abstraction and expertise is similar to the distinction be-
tween general guidelines, category-specific rules which are
derived from previous projects, and product-specific guide-
lines that are developed as part of an individual project [26,
p. 93].

8. Prototyping. Prototyping puts concrete interfaces into
the hands of users much earlier than the final product, albeit
limited in features, performance, and stability. In this more
software-oriented area of usability engineering, software de-
sign patterns play an important role. If the development
group members express their architectural standards and
components, as well as specific project ideas, as patterns,
then the user interface design group can relate to those con-
cepts more easily, and will better understand the concerns of
the development team. For example, the HCI design group
could change the feature set in a prototype to make it eas-
ier to implement without compromising its usefulness for
testing.

9. Empirical testing. Prototypes, from initial paper
mockups to the final system, are tested with potential users
to discover design problems. While patterns cannot help
the actual evaluation process, the set of HCI patterns can
be used to relate problems discovered to the patterns that
could be applied to solve those problems, as shown in the
next phase.

10. Iterative design. Prototypes are redesigned and im-
proved iteratively and based upon feedback from user tests.
In this activity, patterns of HCI or software design experi-
ence are an important tool to inform the designer about his
options. Contrary to general design guidelines, which are
mainly descriptive, and merely state desirable general fea-
tures of a “good” finished interactive system, patterns are
constructive: they suggest how a problem can be solved.
Naturally, patterns evolve over the course of a project, re-
flecting the progress in understanding of the problem space
and improving the design. Successful solutions serve as ex-
amples for existing patterns, or initiate the formulation of
a new pattern. Subsequent projects will relate more eas-
ily to patterns with such well-known examples. The result
is a post-hoc “structural” design rationale which keeps the
lessons learned during a project accessible for the future.
Patterns are less suited to document good and bad design

decisions in the form of a “process” design rationale, al-
though the concept of anti-patterns of bad, but tempting
solutions could be used to model discarded design options.

11. Collect feedback from field use. Studies of the
finished product in use, help line call analysis, and other
methods can be used to evaluate the final product after de-
livery. Here, the application domain pattern language serves
as an important tool to talk to users. HCI design patterns
point out design alternatives for solutions that need to be
improved. Similarly, feedback can strengthen the argument
of those patterns that created a successful solution, and sug-
gest to rethink those that led to suboptimal results.

4. EXAMPLE: DESIGNING INTERAC-
TIVE MUSIC EXHIBITS

As a proof of concept, we used our experience from design-
ing an interactive, computer-based music exhibit, to start
building a pattern language about the musical, HCI, and
software design lessons learned from that project. We will
briefly present the original project’s goals and its design,
and then give some examples of resulting patterns from the
various disciplines, and at various levels of abstraction.

4.1 The WorldBeat Project
The Ars Electronica Center in Linz, Austria [22] is a tech-
nology museum “of the future”, an exhibition and venue
centre where the arts and new technology merge. Our re-
search group designed one floor within this centre, address-
ing future computer-supported learning and working envi-
ronments. Apart from an electronic class/conference room
[25], we designed several exhibits showing the use of com-
puters in specific learning subjects and working situations.
WorldBeat was one of these exhibits, designed by the au-
thor.

Briefly, WorldBeat allows the user to interact with music in
quite new ways. The complete exhibit is controlled using
just a pair of infrared batons. They are used to navigate
through the various pages of the system, and to create mu-
sical input, from playing virtual instruments like drums or a
guitar, to conducting a computer orchestra playing a classi-
cal piece, to improvising to a computer Blues band – without
playing wrong notes. Furthermore, users can try to recog-
nize instruments by their sound alone, and locate tunes by
humming their melody. The system is described in more
detail in [9], and on the video proceedings of that CHI con-
ference. The goal of WorldBeat was to show visitors that
computers may open up entirely new ways of interacting
with musical information, many of which they can expect to
see implemented in future consumer products.

To design a system for such an environment, we had to take
into account a number of factors that do not usually have to
be considered in such detail when designing an interactive
system. However, instead of listing our findings as a loose
set of guidelines, we used the pattern format described above
to summarize our experience in all three disciplines. We
will show what musical concepts we identified to address in
our exhibit, describe our user interface patterns specific to
this scenario, and present software design solutions that we
found for this system.

5

We will not describe the patterns in full detail; that would
typically require several pages per pattern. Instead, we show
the network of patterns identified so far, and look in more
detail at the main issues of context, problem, solution, ex-
amples, and references, for a small but representative selec-
tion. The actual patterns are written in a more detailed tex-
tual form without explicit labels for “Context”, “Problem”
etc.: Instead, they use implicit typographical structuring to
clearly show the components of each pattern. The complete
pattern languages can be found in [12].

4.2 Musical Design Patterns
We will begin by describing the musical concepts and “guide-
lines” that musicians use when they compose or improvise
music. Our point is that this process can be considered a
“design” activity as well, and that it is feasible to structure
the rules and values of this design process into patterns.

At the most abstract level we consider useful, a certain style
of music is chosen. Our exhibit features various musical
styles in different parts of the system, but we will restrict
ourselves to the presentation of the blues style. The pat-
terns below are referenced by that top-level style pattern.
Downward links are “references” relations (see Fig. 1).

BLUES STYLE

12-BAR
PROGRESSION

TRIPLET
GROOVE

4/4
RHYTHM

SEVENTH
CHORDS

CHORD
TRANSITIONS

2-SENTENCE
VERSE

CHORD
ALTERATIONS

MAJOR
CHORDS

...

BLUES
LYRICS

INSTRUMEN-
TATION

...

MELODIC
PHRASES

BLUE
NOTES

...

BLUES
TEMPO

PENTATONIC
SCALE

Figure 1: A pattern language for blues music.

twelve-bar progression

Context: Playing a blues style piece.

Problem: Players need to agree on a common sequence
(“progression”) of musical chords to create harmonically co-
herent music. A progression is useful to avoid a too static,
boring impression, but it should be simple enough to be
easily remembered while playing.

Solution: Use the following Blues progression of chords,
each lasting one bar (in C major, I = C major, IV = F
major, V = G major):

I-I-I-I-IV-IV-I-I-V-V-I-I

Examples: The above is the simplest form of any Blues
piece, and most Blues music adheres to it. It is found in
countless recordings and sheet music.

References: The sequence is built from basic major

chords. Many variations of this basic progression are pos-
sible that make the music more interesting. A simple one is
to use seventh chords instead of the simple major chords.

The sequence can be varied further by replacing chords with
more complex chord transitions.

triplet groove

Context: Playing a piece in the blues style. The concept
is also used in other styles like Swing, and Jazz in general.

Problem: Players need to create a swinging rhythmic feel-
ing. The straight rhythm from other styles does not cre-
ate this. At the same time, sheet music cannot include all
rhythmic variances because it would become too complex
and unreadable.

Solution: Where the written music contains an evenly
spaced pattern of eighth notes, shift every second eighth
note in the pattern backwards in time by about one third of
its length, shortening it accordingly, and make the preceding
eighth note one third longer. Instead of a rhythmic length
ratio of 1:1, the resulting pattern are alternating notes with
a length ratio of 2

3
: 1

3
. Two straight eighth notes have

been changed into 2+1 “triplet” eighth notes. This rhyth-
mic shift creates what musicians call the “laid-back groove”
in a performed piece. Fig. 2 shows this concept in traditional
notation.

3 3

Figure 2: From straight notation to triplet groove.

Examples: Any recorded Blues piece will feature this
rhythmic shift, although the actual shift percentage varies
very widely. Usually, the faster a piece is, the less shifting
takes place.

References: triplet groove always modifies an underly-
ing straight beat, typically a 4/4 rhythm.

These examples show what issues musical patterns may ad-
dress, and how they can be formulated. We will now look at
HCI design patterns that could create an interface dealing
with such musical concepts.

4.3 Interaction Design Patterns
This section describes our collection of patterns for HCI
design. We have focused on issues particularly important
for interactive exhibits, but they are of equal importance
to “kiosk” and similar public-access systems where typical
users are first-time and one-time users with short interaction
times and no time for a learning curve.

The outer graph (see Fig. 3) shows most of them, with top-
down links again representing “references” relations. We
will go into more detail for two of these patterns.

6

SIMPLE
IMPRESS.

INNOVATIVE
APPEARANCE

ENGAGE VISITOR

INTERACTIVE EXHIBIT

ATTRACT VISITOR DELIVER MESSAGE

DOMAIN-
APPROPR. DEV.

DYNAMIC
DESCRIPTOR

FLAT&NARROW
TREE

SPARSE
LAYOUT

NEW
INPUT DEV.

IMMEDIATE
FEEDBACK

INVISIBLE
HARDWARE

SCRIPT
FONT

UNIVERSAL
ACCESS

COARSE-MOTORIC
INPUT

ADJUSTABLE
HEIGHT

INCREMENTAL
REVEALING

CLOSED
LOOP

BATONS

Figure 3: An HCI pattern language for interactive
exhibits.

attract visitor

Context: An interactive exhibit that should attract and
engage its visitors to deliver a message.

Problem: In an exhibition centre, many exhibits are “com-
peting” for the visitor’s attention although they should
rather “cooperate” to inform the visitor, without one system
becoming too dominating in its appearance. On the other
hand, people will never discover the message of an exhibit
if they are not drawn towards it in the first place, or if it
looks too complicated. After all, there is usually nothing
that forces the visitor to use any of the exhibits.

Solution: Make the exhibit look interesting by creating an
innovative-looking interface that promises an unusual expe-
rience, but make it appear simple enough to scare off neither
computer nor application domain novices. Use an appear-
ance and interaction technique that is adequate for the do-
main of the exhibit (which is usually not Computing).

Examples: At the WorldBeat exhibit, there is no mouse,
keyboard, or computer visible; all that the user sees is a pair
of infrared batons, and a monitor with a simple, inviting
startup screen (see Fig. 4).

Figure 4: A user at the WorldBeat exhibit.

References: The simple impression pattern shows how to
build a system that does not scare off visitors. incremental

revealing conveys initial simplicity without limiting the
depth of the system. Use domain-appropriate devices so
the exhibit and its periphery reflect its subject area.

incremental revealing

Context: Designing a computer exhibit interface that at-

tracts visitors with its initial simple impression, but
that still engages visitors for a while with sufficient depth
of functionality and content.

Problem: A simple appearance, and presenting the sys-
tem’s depth are competing goals.

Solution: Initially, present only a very concise and simple
overview of the system functionality. Only when the user be-
comes active, showing that he is interested in a certain part
of this overview, offer additional information about it, and
show what is lying “behind” this introductory presentation.

Examples: WorldBeat is structured into a short introduc-
tory screen, followed by a simple main selection screen with
only names and icons of the main exhibit components (con-
ducting, improvising, etc.) If the user moves the pointer
towards one of the component icons, a short explanation
appears (first revealing stage). Then, if he selects it, a sepa-
rate page opens up that explains the features in more detail
(second revealing stage).

References: Most information systems reveal their content
incrementally through a flat and narrow tree structure.
The dynamic descriptor pattern also implements incre-
mental revealing. It can be found in Apple’s Balloon Help,
Windows ToolTips, and has also been identified in [30].

4.4 Software Design Patterns
As Gamma et al. [18] suggested, domain-specific software
design patterns are important to supplement the general
ones. There are many general software patterns that could
be identified in our system, but we will concentrate here on
those patterns that relate specifically to software design for
music exhibits. We will describe one of these patterns below.
More details on these patterns can be found in [15] and [12].

metric transformer

Context: Musical performance adds many subtle variations
to the lifeless representation of a written score, in the har-
monic, melodic, and rhythmic dimensions. To model these
variations, a system will follow the transformer chain

pattern, where sequence of transformations are applied to an
incoming stream of musical data. Due to its one-dimensional
nature, the rhythmic dimension is especially accessible for
computer modeling.

Problem: An incoming stream of musical events needs
to be modified in its timing: Some events need to be delayed
for a short period. The delay may follow a deterministic
algorithm, or a random distribution.

7

Solution: A number of objects need to interact for such
a functionality: A Creator supplies the raw, straight musi-
cal material, and a Metronome the raw, straight rhythm.
A Modulator models the metric transformation, i.e., the
deviation from the uniform beat. It captures the musical
idea behind the transformation. It may feed overall gradual
tempo changes back to the Metronome. A Customizer lets
the user change the Modulator parameters in real time. A
Timer takes the basic Metronome beat, and modifies it with
the Modulator output. A Player component finally outputs
the rhythmically transformed musical material as a new se-
quence of musical events.

Metronome Modulator

Player

Timer Creator

Customizer

parameter settings

basic rhythm rhythm variations

modulated rhythm musical material

modulated material

user control input

flexible input

feedback

Figure 5: The metric transformer pattern.

Examples: The WorldBeat exhibit features a Groove slider
that lets the user change the swing feeling of a Blues band
while playing (see below). Other examples of such variations
that the pattern could implement are the random variations
of human performance when interpreting a written score, or
the conducting process where the conductor makes subtle
changes to the existing tempo and dynamic structure of an
orchestra piece.

References: This pattern works best with a representa-
tion of the musical material as musical events; an exam-
ple is the widely used Musical Instruments Digital Interface
(MIDI) standard.

4.5 Reusing the Pattern Language
In a follow-up project, we designed an interactive music ex-
hibit to learn about the concept of the classical fugue. The
musical domain is quite different from jazz, and only a few
musical patterns carried over into the new project. How-
ever, we identified many HCI and software engineering pat-
terns in our language that carried over very well to this new
task. In particular, these patterns helped us communicate
our previous experience to new members of the design team.
Recently, we finished work on two other projects in a sim-
ilar domain for the house of music vienna, including a
system to conduct the Vienna Philharmonic Orchestra [13],
and have been able to again reuse and refine many of the
patterns that were identified through WorldBeat and im-
proved in the Fugue project.

4.6 Pattern Use in Education
HCI patterns were also used by the author to teach user in-
terface design to first-year computer science undergraduate
students. Although these students only received a pattern

collection to refer to for their first design projects, it was
surprising to see how quickly they discovered patterns that
were applicable to their current design situation, how they
used those proven solutions in their own project context, and
how a vocabulary of patterns was used quickly to discuss op-
tions and solutions within and between the design groups.
In an ad-hoc quiz and poll at the end of the term, students
were able to recall 1.6 patterns by name on the average (al-
though patterns had only been used for a short period of the
course), and judged their usefulness with an overall 1.9 (1
= will absolutely reuse them, 5 = will absolutely not reuse
them). The findings of this study are described in more
detail in [12].

5. CONCLUSIONS AND FURTHER RE-
SEARCH

Communication in interdisciplinary design teams is a ma-
jor problem for HCI practitioners. We suggested that all
team members – especially HCI people, software engineers,
and experts from the application domain – formulate their
experience, methods, and values in the form of pattern lan-
guages, as originally introduced in urban architecture. For a
uniform representation and computer support, we proposed
a formal representation of patterns and their relations.

As an example, we created pattern languages from our expe-
rience in creating an interactive music exhibit. Our results
are promising, and indicate that such patterns help people
from outside the respective discipline to understand our find-
ings. They have proven useful to create subsequent exhibits
with a similar background, and HCI patterns have served
well in an HCI course.

Currently, we are extending and refining our language by
identifying additional patterns and relations. First steps
have also been undertaken in designing the Pattern Editing
Tool, PET, a system to support creating, reviewing, and
browsing pattern languages.

A complete version of the HCI and other pattern languages
for interactive exhibits and similar systems, as well as a
description of PET, can be found in [12].

Applying the pattern technique to entirely new application
domains could further strengthen our argument that struc-
turing them into patterns is a generally valid approach, and
a more intensive use of HCI patterns in user interface design
courses will hopefully give us more detailed findings about
their usefulness in education.

6. ACKNOWLEDGEMENTS
The author would like to thank his colleagues at the Dis-
tributed Systems Group at the Darmstadt University of
Technology, the Telecooperation Research Group at the Uni-
versity of Linz, and at the Distributed Systems Group at the
University of Ulm, particularly Max Mühlhäuser at Darm-
stadt, for their help in working on the projects that created
the necessary basis of this work.

Portions of this article have been adapted from Work to
be published in full in “A Pattern Approach to Interaction
Design” by the author, to be published by John Wiley &
Sons, October 2000.

8

7. REFERENCES
[1] L. Alben, J. Faris, and H. Sadler. Making it

Macintosh: Designing the message when the message
is design. Interactions, 1(1):10–20, January 1994.

[2] C. Alexander. The Timeless Way of Building. Oxford
University Press, 1979.

[3] C. Alexander, S. Ishikawa, M. Silverstein,
M. Jacobson, I. Fiksdahl-King, and S. Angel. A
Pattern Language: Towns, Buildings, Construction.
Oxford University Press, 1977.

[4] C. Alexander, M. Silverstein, S. Angel, S. Ishikawa,
and D. Abrams. The Oregon Experiment. Oxford
University Press, 1988.

[5] Apple Computer. Macintosh Human Interface
Guidelines. Addison-Wesley, 1992.

[6] L. Barfield, W. van Burgsteden, R. Lanfermeijer,
B. Mulder, J. Ossewold, D. Rijken, and P. Wegner.
Interaction design at the Utrecht School of the Arts.
SIGCHI Bulletin, 26(3):49–79, 1994.

[7] E. Bayle, R. Bellamy, G. Casaday, T. Erickson,
S. Fincher, B. Grinter, B. Gross, D. Lehder,
H. Marmolin, B. Moore, C. Potts, G. Skousen, and
J. Thomas. Putting it all together: Towards a pattern
language for interaction design. SIGCHI Bulletin,
30(1):17–23, January 1998.

[8] K. Beck and W. Cunningham. Using pattern
languages for object-oriented programs. Technical
Report CR-87-43, Tektronix, Inc., September 17,
1987. Presented at the OOPSLA’87 workshop on
Specification and Design for Object-Oriented
Programming.

[9] J. O. Borchers. WorldBeat: Designing a baton-based
interface for an interactive music exhibit. In
Proceedings of the CHI 97 Conference on Human
Factors in Computing Systems (Atlanta, GA, USA,
March 22–27, 1997), pages 131–138, ACM, 1997.

[10] J. O. Borchers. CHI meets PLoP: An interaction
patterns workshop. SIGCHI Bulletin, 32(1):9–12,
January 2000. (Workshop at ChiliPLoP’99).

[11] J. O. Borchers. Interaction design patterns: Twelve
theses, 2000. Position paper for the workshop Pattern
Languages for Interaction Design: Building
Momentum, CHI 2000 (The Hague, Netherlands, April
2–3,2000).

[12] J. O. Borchers. A Pattern Approach to Interaction
Design. John Wiley & Sons, October 2000.

[13] J. O. Borchers. The Virtual Conductor: Conduct the
Vienna Philharmonic, 2000.
http://go.to/virtualconductor.

[14] J. O. Borchers, R. N. Griffiths, L. Pemberton, and
A. Stork. Pattern languages for interaction design:
Building momentum. Workshop at CHI 2000 (The
Hague, Netherlands, April 2–3,2000); report to be
published, 2000.

[15] J. O. Borchers and M. Mühlhäuser. Design patterns
for interactive musical systems. IEEE Multimedia,
5(3):36–46, 1998.

[16] P. Denning and P. Dargan. Action-centered design. In
T. Winograd, editor, Bringing Design to Software,
chapter 6, pages 105–119. Addison-Wesley, 1996.

[17] A. J. Dix, J. E. Finlay, G. D. Abowd, and R. Beale.
Human-Computer Interaction. Prentice-Hall Europe,
London, second edition, 1998.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[19] Å. Granlund and D. Lafrenière. A pattern-supported
approach to the user interface design process.
Workshop report, UPA’99 Usability Professionals’
Association Conf. (Scottsdale, AZ, June 29–July 2,
1999), 1999.

[20] Å. Granlund and D. Lafrenière. PSA: A
pattern-supported approach to the user interface
design process. Position paper for the UPA’99
Usability Professionals’ Association Conf. (Scottsdale,
AZ, June 29–July 2, 1999), 1999.

[21] R. Iannella. Hypersam: A practical user interface
guidelines management system. In Proc. QCHI’94
Second Annual CHISIG (Queensland) Symposium,
Bond Univ., Australia, 1994.

[22] S. Janko, H. Leopoldseder, and G. Stocker. Ars
Electronica Center: Museum of the Future. Ars
Electronica Center, Linz, Austria, 1996.

[23] S. Kim. Interdisciplinary cooperation. In B. Laurel,
editor, The Art of Human-Computer Interface Design,
pages 31–44. Addison-Wesley, 1990.

[24] G. A. Miller. The magical number Seven, plus or
minus two: Some limits on our capacity for processing
information. The Psychological Review, 63:81–97,
1956. http://www.well.com/user/smalin/miller.html.

[25] M. Mühlhäuser, J. Borchers, C. Falkowski, and
K. Manske. The Conference/Classroom of the Future:
An interdisciplinary approach. In Proc. IFIP Conf.
“The Internat. Office of the Future: Design Options
and Solution Strategies” (Tucson AZ, Apr. 9–11,
1996), pages 233–250. Chapman & Hall, 1996.

[26] J. Nielsen. Usability Engineering. Morgan Kaufmann,
San Francisco, 1993.

[27] D. A. Norman. The Psychology of Everyday Things.
Basic Books, New York, 1988.

[28] D. A. Norman and S. W. Draper. User-Centered
System Design: New Perspectives on
Human-Computer Interaction. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1986.

[29] A. Sutcliffe and M. Dimitrova. Patterns, claims and
multimedia. In Human-Computer Interaction –
INTERACT ’99, pages 329–335, Edinburgh, UK, 30th
August–3rd September 1999. IOS Press, Amsterdam.

9

[30] J. Tidwell. Interaction design patterns. PLoP’98
Conference on Pattern Languages of Programming,
Illinois, extended version at http://www.mit.edu/-
j̃tidwell/interaction patterns.html, 1998.

[31] J. Tidwell. The Gang of Four Are Guilty. http://
www.mit.edu/̃ jtidwell/gof are guilty.html, 1999.

[32] B. Tognazzini. TOG on Interface. Addison-Wesley,
1992.

10

