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Abstract

This paper describes the first multimedia system that
allows users to conduct a realistic electronic orches-
tra. Users control tempo, dynamics, and instrument
emphasis of the orchestra through natural conducting
gestures with an infrared baton. Using gesture recogni-
tion and tempo adjustment algorithms, the system plays
back an audio and video recording of an actual orches-
tra that follows the user’s conducting in real time.

A major achievement of this system is that it is able
to play back the audio and video recording of the or-
chestra at variable speed while avoiding pitch changes
or other artifacts in the playback. These speed changes
can be executed interactively in real time while the
recording is being played back.

The system has been deployed as an exhibit that has
become a major attraction of a large Vienna-based mu-
sic exhibition center.

1. Introduction

In contrast to the rapidly growing abilities of to-
day’s computing architectures in recording and play-
ing back multimedia contents, innovation in the area
of interacting with these data streams has fallen be-
hind. For example, there are many established ways
of interacting with music (such as humming, impro-
vising, or conducting) that could offer users powerful
new ways to access and control multimedia, but they

are rarely available in mainstream systems that claim
to be “multimedia-enabled”. The user interface, there-
fore, is rapidly becoming the bottleneck when it comes
to new ways of deploying computing technologies.

Conducting is a particularly good example: People
frequently enjoy acting as if they were conducting a
classical piece that is being played back from a CD.
Naturally, they are really simply conducting alongside
the fixed recording, without any way to actually influ-
ence the performance. The experience would be much
more realistic if the user could indeed control the or-
chestra playing. And (in order to really feel like Kara-
jan) the user should be able to not just hear, but also
see the orchestra playing. The goal of this work was to
create such a system.

2. Requirements

The above scenario suggested the following basic re-
quirements:

Conducting Device: The system requires a baton-
like device to let the user control the orchestra in a
simple but natural way. Since users in general can-
not be expected to know professional conducting
patterns, the system needs to be able to interpret
a simple one-hand, up-down conducting motion.

Gesture Recognition: Input from the baton device
needs to be analyzed to determine the currently
conducted volume (derived from gesture size),



tempo (from gesture speed), and any desired
emphasis of certain instrument sections (from the
direction in which the user conducts).

Time-Stretching Algorithm: The audio/video
recording of the orchestra needs to be played back
at varying speeds. To give users enough control,
playback speed should be variable between 50%
and 200% of the original tempo. However, differ-
ent playback speeds have to avoid any noticeable
artifacts (such as a change in audio pitch), and
changes in playback speed need to be possible at
any time while the music is playing.

User Interface: Apart from displaying the orchestra,
the system also has to offer a means to let the user
select a language and a piece to conduct, and to
display instructions and other messages.

In addition, there were several requirements due to
the fact that the resulting system was to be deployed
in the house of music vienna [1], a major music
museum and exhibition center in Vienna, Austria, that
opened its doors to the public in June 2000:

Audio Quality: Since the system was to feature a
well-known orchestra (the Vienna Philharmonic),
audio quality of the time-stretching component
had to be high enough to satisfy the expectations
that both potential users and the orchestra had.

Usability: As a system to be deployed in a public mu-
seum, the software design had to ensure a mini-
mal learning curve and immediate usability by a
wide variety of users. As an interactive exhibit,
the system also had to fulfil other requirements
that are particularly important in this class of sys-
tems, such as a non-technical, innovative appear-
ance, universal accessability, and robustness [4].

3. Usage Scenario

The following scenario describes the user experience
that the system was to convey:

As an exhibit, the system was designed to be set
up in a room by its own which was designed to create
an environment of the Vienna Philharmonic’s concert
hall. Users enter this room, find wall-size facsimiles
of the available pieces on wall tapestries, traditional
note stands, and a red velvet conductor’s podium. In
front of them, a large rear video projection shows the
orchestra, softly rehearsing, waiting for a conductor to
become active (see Fig. 1).

When a user picks up the infrared baton and presses
the button on it (as indicated on the idling orchestra
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Figure 1. Overview of the Personal Orchestra
exhibit space.

screen), a first screen appears, and by moving the baton
up and down, the user controls a highlight on-screen
to select one of the available languages. The selection
is activated by pressing the button on the baton. The
subsequent screen explains how to conduct, and offers a
similar mechanism to select one out of four well-known
pieces, or to learn more about the exhibit.

Once a piece is selected, the orchestra appears on the
screen, waiting. When the user begins to conduct, the
orchestra starts playing, following the user’s gestures.
The players continue until the piece is over, when they
raise to congratulate the conductor with applause from
the audience, or until they have decided that the user
keeps conducting too badly (see below).

Downward turning points of the baton trajectory
identify the conductor’s beats. In accordance with tra-
ditional conducting, vertical size (amplitude) of the
conducting gesture controls overall orchestra volume.
Horizontal direction (conducting “towards” certain in-
strument sections) lets the user raise that section above
the rest of the orchestra.

Users are prevented from conducting too slowly
or too quickly—not only is time-stretching or time-
compressing the orchestra audio with sufficient quality
only possible to a certain extent, but the Vienna
Philharmonic also would not have liked the idea that
exhibit visitors could make them play arbitrarily fast
(and look arbitrarily silly in the process). However, an
error dialog box informing users about their mistake
would have ruined the immersive experience. Instead,
we invented a more natural and realistic error message:
If the user “teases” the orchestra too much by con-
ducting very quickly, slowly, or stopping completely,
the orchestra reacts in the most natural way—they
stop playing, and one player gets up to complain about



the conductor’s skills. The system includes suitable
tolerance rules for the orchestra (currently 8 beats of
conducting too quickly or slowly), detects conducting
that breaks these rules, and shows the corresponding
complaint sequence without noticeable interruptions.

4. System Design

4.1. Design patterns

Our software design was based on a set of human-
computer interaction design patterns for interactive ex-
hibits [10]. These HCI design patterns capture princi-
ples and guidelines of interaction design for this class
of systems.

Each pattern is a textual and graphical description
of a successful solution to a recurring usability problem
in interactive exhibits, and contains the same compo-
nents: Its name is used to refer to the pattern eas-
ily and create a vocabulary for the design team. Its
ranking shows how valid and universal the author con-
siders the pattern, and a sensitizing example shows a
picture of a real interface to illustrate the idea that the
pattern captures. This is followed by a problem state-
ment explaining what UI design problem the pattern
addresses, and a set of examples or other empirical re-
sults are then used to show how this problem has been
solved in similar ways in different systems.

These examples are generalized into the solution, a
more reusable design guideline for the problem of this
pattern. A diagram shows the essential idea of the
solution in graphical form. Each pattern also refers to
its context (when it should be applied) by pointers from
other patterns in the language that address larger-scale
design issues, and it itself refers in turn to smaller-scale
patterns (its references) to consider next in order to
implement and further unfold the design solution that
this pattern suggests.

We have reproduced the overall graph of the pat-
tern language in Fig. 2 to convey an idea of the design
patterns that were considered for this project. As an
example, the easy handover pattern from that lan-
guage makes the following design recommendation:

• At interactive exhibits, one user often takes over
from the previous one, possibly in the middle of
the interaction, and without necessarily having ob-
served or knowing much about the interaction his-
tory of his predecessor.

• Therefore, minimize the dialogue history that a
new user needs to know to begin using the inter-
active exhibit. Offer an obvious way to return the

system to its initial state. Let users change criti-
cal, user-specific parameters (such as language) at
any time during the interaction.

Of course, this list is just the essence (the problem
and solution statements) of the easy handover pat-
tern. The entire pattern consists of three pages of text
and graphics, including examples of existing systems
using this solution successfully, context and reference
pointers to other pattern in the language, and all other
pattern constituents listed earlier.

Nevertheless, this excerpt should convey an idea of
how these patterns were able to help us design Per-
sonal Orchestra: For example, we used the above pat-
tern to decide that no special gestures or other actions
should be necessary anywhere during the conducting,
to stop or otherwise control the exhibit. While these
gestures could have been explained in the initial open-
ing screens, there was no guarantee that any particular
user would have actually seen those instructions.

HCI design patterns have recently received increas-
ing attention [11]. While it is beyond the scope of this
paper to further discuss this approach, it is explained
in detail in [10].

4.2. System architecture

Figure 3 shows the resulting system architecture.
The visitor conducts using an infrared baton whose
signals are picked up by a tracker and sent to the
POServer machine. There, tempo, volume, and or-
chestra section emphasis are determined by gesture
recognition and prediction. This “heartbeat” infor-
mation is sent via our TCP-based Personal Orchestra
Control Protocol (POCP) to the POClient computer,
which renders the selected piece accordingly in audio
and video, permanently adjusting playback parameters
to follow the conducting.

During the initial selection of language and piece,
and upon finishing or breaking off a piece, POServer
sends similar POCP commands to POClient to display
the corresponding screens and movie sequences. POCP
is a simple, HTTP-like protocol that sends textual mes-
sages about the current speed, volume, instrument em-
phasis and state from the server to the client, and re-
turns movie positions from the client. The protocol is
described further below.

4.3. Input technology

We used Don Buchla’s Lightning II infrared baton
system [12]. It translates input from the infrared-
emitting, battery-operated baton, received by a tracker
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Figure 3. Personal Orchestra system architec-
ture.

mounted below the screen, into clean MIDI controller
signals representing x/y baton coordinates with a res-
olution of 7 bit each. A third, binary controller signal
represents the baton button.

4.4. Gesture recognition and prediction

From continuously monitoring the position of the
baton, its current x/y position as well as approxima-
tions for its first derivatives are known. Every time the

system detects a downward turning point in the gesture
(negative-to-positive sign change of the first derivative
of the y coordinate in the baton trajectory), it is inter-
preted as a “downbeat”. These downbeats correspond
to a series of positions in the movie marked manually
as the “beats” in the music, using a simple utility we
developed to take time-stamped key press inputs from
a user tapping alongside a piece being played back.

The current playback speed is then adjusted so that
the orchestra always follows the conductor. There are
two major problems with this, however:

First, a conductor may be conducting at the same
speed as the orchestra plays, still the two may be out of
phase—for example, the orchestra would always play
their “beat” half a beat after the conductor’s downward
beat gesture.

Second, when a conductor speeds up, for example, a
part of the current beat has not been played yet when
the next, first conductor beat gesture at the higher
tempo arrives: the orchestra has to “catch up” with
the conductor (Figure 4). To re-synchronize with the
conductor, playback speed has to be increased above
the target (measured) new conducting rate for a while,
until movie and conductor are at the same time in their
piece, then it has to level back off to the actual new
conducting speed, according to the following formulae:

Let br be the time when the last, and b′
r the time

(“real time”) when the previous beat has been con-
ducted by the user. Similarly, let bm and b′

m be
the playback position (“movie time”) in the movie at
time br and b′

r respectively. Then the relative velocity
(tempo) with which the user is conducting the movie



is

vu =
bm − b′

m

br − b′
r

Under the realistic assumption that, within a single
conducted beat, the conducted tempo does not change
dramatically, the current position tu to which the user
has conducted the movie at time t now equals

tu = bm + vu · (t − br)

Then, if the movie is currently at position tm, the
new relative velocity vm of the movie (vm = 1 for the
originally recorded tempo) to catch up with the con-
ductor within a time window of ∆t is

vm =
∆t · vu

tm + ∆t − tu

Of course, since this adjustment happens every beat,
the catch interval is not used in its entirety if it is longer
than one beat; instead, the movie speed will gradually
converge back to the new conducted speed, reducing
its over-estimate in a series of adjustments.

The larger the time window ∆t in which this catch-
ing up happens is chosen, the more the orchestra cre-
ates the impression of being “slow to catch up”—it
does not respond immediately to a tempo change, but
rather over time, and it takes the orchestra longer to
get back in sync with the conductor. The advantage
is that short tempo jitter by inexperienced conductors
does get filtered out; the orchestra is more “benign”
and tolerant against such errors. We left this param-
eter as a variable that can be changed before running
the system, to simplify adjustments in everyday use.

Dt
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=

Figure 4. When a conductor speeds up, the or-
chestra has to play faster than the new tempo
to get back in phase.

A similar low-pass filter was implemented for volume
control. In order to make the system more tolerant
against conducting glitches, abrupt changes in volume
are prevented by calculating the desired new volume
vol′ with the following formulae out of the previously
calculated volume vol and the volume volu conducted
by the user, where the values of volume are in the range
[0; 1]:

vol′ = vol +
volu − vol

2
, if |volu − vol| > 0.1

vol′ = vol, else.

Figure 5. The Personal Orchestra exhibit in the
house of music vienna.

4.5. High-quality interactive audio/video time-
stretching

A broadcast-quality Digital Betacam video camera
fixed to a position resembling the view of the conduc-
tor recorded the orchestra playing various pieces with-
out a conductor. Its output was converted to AVID,
a computer-compatible digital video format. Micro-
phones throughout the orchestra recorded the vari-
ous instrument sections onto ADAT digital audio tape.
The challenge now was to adjust the speed of, or time-
stretch, the orchestra movie being played back.

Time-stretching video is simple; most multimedia
libraries easily handle changes in playback speed by
repeating or dropping frames. As long as these varia-
tions do not drop below animation frame rates (around
12 fps), and as long as there is no extreme move-
ment that would create jerkiness at higher-than-normal
speed (which is not the case with an image of an or-
chestra sitting and playing), the change of video play-
back speed creates no critical artifacts. While non-
standard playback speed creates unnatural movements



(such as with respect to gravity—objects falling at
slower than normal speed), this was also uncritical with
our scenery.

The audio track, on the other hand, creates a prob-
lem since of course, just changing the speed of an audio
recording being played back will also change its pitch
(an effect known from choosing a different speed on
an analog record player). It is relatively easy to avoid
this by Fourier-transforming the audio signal: in fre-
quency space, it is possible to change the duration of
a signal without changing its frequency. After inverse
Fourier transformation, the resulting audio signal can
be played in a time-stretched version at the same pitch.
Another way to look at the same process is granular
synthesis, which essentially cuts the audio signal into
small packets of ca. 50ms and then repeats or leaves
out packets to adjust tempo.

Unfortunately, these simple methods create notice-
able artifacts in the audio signal. Typically, slowed-
down Fourier-transformed versions will exhibit a strong
reverberation component since all parts of the audio
signal will have been prolonged equally. Granular syn-
thesis needs to mix several signals into each other to
avoid artifacts at packet borders, and even then fast
attack sounds, if they happened to fall into a packet
that is repeated, would sound twice.

Still, various algorithms exist that time-stretch au-
dio in real-time. However, while some of these can, for
example, speed up (“time-compress”) recorded speech
[13] with high intelligibility, these algorithms produce
insufficient sound quality when applied to polyphonic,
musical audio signals.

Essentially, audio data needs to be preexamined,
even depending on music type, and time-stretched off-
line to take care of these special cases, which takes a
multiple of the original playing time to create good au-
dio results. Naturally, it is only a matter of time before
affordable hardware can do these computations in real
time. However, at the time Personal Orchestra was im-
plemented (1999–2000), the ratio of processing time to
signal length was still far away from real-time perfor-
mance (32:1 on a Pentium III/450 MHz processor).

For that reason, we intended to pre-time-stretch all
our audio channels at various speeds, and then, for each
channel in parallel, crossfade between its pre-stretched
versions to change playback speed. That way, time-
stretching would take place only once during devel-
opment for each channel and speed required, taking
as much time as necessary to produce the best pos-
sible audio quality. During playback, all to be done
would be to determine the new tempo required, and
smoothly crossfade all four audio channels from their
current tempo track over to their newly selected one

within a few milliseconds. (This crossfade is necessary
to avoid the audible clicks that the audio waveform dis-
continuities during an immediate track switch would
create.)

However, this would have introduced different time
coordinate systems for each audio track. To avoid
this, and benefit from the system support of a single
movie file with one video and multiple audio tracks, we
pitch-shifted the audio between -1 and +1 octave, in
2-half-tone steps of a factor of 2 · 12

√
2. Playing back,

for example, an audio recording that has been pitch-
shifted down one octave at double speed returns the
original pitch at double tempo. This way, we were
able to integrate all pitch-shifted audio tracks with the
video track, and a tempo change simply meant fading
over to the appropriate audio track, and simultane-
ously changing playback speed of the entire movie to
bring that audio track back to its original pitch. We
used Prosoniq’s commercial high-quality pitch-shifting
software package TimeFactory, which utilizes the pro-
prietary MPEX algorithm (Minimum Perceived Loss
Time Expansion/Compression) [14].

The emphasis between different instrument sections
was simply implemented by pitch-shifting our four
recorded and pre-mixed instrument section channels
separately, and mixing them according to emphasis
during playback in real time.

Figure 6 shows the structure of a typical audio/video
data file, representing one musical piece, and stored as
a QuickTime movie. Track 1 carries the video, tracks
2–14 the full-orchestra stereo audio track, ordered from
lowest to highest pitch (in increments of

√
(2), i.e.,

semitones). Tracks 15–27 and 28–40 carry audio data,
in the same pitch order, for the two instrument sec-
tions that can be emphasized. The initial part of the
movie only contains a few seconds of data in the video
and the original stereo audio track, showing the orches-
tra mounting their instruments (synchronized using a
clapperboard in the original raw footage) until the mo-
ment the orchestra begins to play. The main part of the
movie shows the orchestra playing and contains data in
the video and all audio tracks. At the end of the piece,
only the video and original stereo track continue, con-
taining the applause scene, and after a separate piece
of footage showing the complaint scene. The system
jumps to this last scene when the conductor performs
too badly.

4.6. Protocol

As shown in the system architecture, the entire sys-
tem was distributed between two machines connected
over a local network. A server machine dealt with ges-
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Figure 6. Layout of audio and video data
streams in a single movie file.

ture recognition and tempo/volume/emphasis compu-
tation, while a client machine used this information to
render the audio and video of the orchestra at high
quality.

Our Personal Orchestra Control Protocol (POCP)
defined the messages that the gesture recognition
component (POServer) could exchange with the
audio/video rendering component (POClient). It was
designed to be lightweight, and because of the fairly
low bandwidth this control channel required, it was
feasible to make the protocol human-readable in order
to simplify development, debugging, and maintenance.
The following commands were specified:

SPD i j: Set playback speed to integer value i
(1=50%. . . 13=200% of normal speed; see the
audio track setup for the actual speeds), and,
if given, set instrument emphasis to section j
(0=none, 1=timpani, 2=horns left, 3=horns right,
4=violoncelli, 5=violins, 6=celli; 0 is the default;
currently only 0, 5, and 6 are used.)

VOL f: Set overall volume to f ∈ [0, 1].

JMP i: Jump to integer position i (in 1/600s) in the
movie.

STP: Stop playback immediately.

LDM i: Load movie with index i, display first
frame. Our sample exhibit features four pieces:
1=Radetzky March, 2=Blue Danube, 3=Eine
Kleine Nachtmusik, and 4=Anna Polka.

LDI: Load introductory quicktime movie, display its
first frame.

SEL i: Display screen i (used during piece selection
and to show information screen, currently 5
screens are used).

INF: Same as SEL 5, showing information screen.

THX: Display “thank you” screen after conducting
piece successfully.

LNG (DE—EN): Switch to German (DE) or En-
glish (EN) as current interface language, and show
the current screen in the new language.

To illustrate the use of the POCP protocol, Figure 7
shows a sample communication between POServer and
POClient.

After launching the application, POClient loads the
idle loop automatically. The first commands from
POServer then tell POClient to jump to the beginning
of that loop, and play it at 5% of full volume. POClient
then reports its current movie position continuously,
until POServer determines that the idle movie has
reached its end, upon which POServer tells POClient
to start again from the beginning.

When the user presses the baton button, POServer
tells POClient to stop the idle loop and switch to the
language selection screen, starting with the default lan-
guage (German) selected. In this example, the user
briefly highlights English as language, but then goes
back to German (LNG DE) and presses the baton but-
ton. POServer next tells POClient to show the piece
selection screen highlighting the second piece (because
the user held the baton at the initial height correspond-
ing to that selection when pressing the button an in-
stant ago).

The user moves the baton to the bottom; POServer
sends a SEL 5 message, and POClient highlights the
lowest selection (the link to the information screen).
By pressing the baton button, the user selects that
link, and POClient is instructed to display that screen
(INF).
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Figure 7. Sample communication through the
Personal Orchestra Control Protocol (POCP).

After reading that page, the user presses the baton
button again (anywhere on the screen), leading back to
the selection of a piece (SEL 4). The user finally picks

piece number 3 (SEL 3).
The corresponding QuickTime movie is loaded

(LDM 3), POClient jumps to where the conductable
video in that movie starts (JMP 3672, determined
from the configuration text file), and sets volume to
70% (VOL 0.7). The user begins to conduct, POServer
recognizes the first gesture and starts the video at
normal tempo (SPD 7).

In order for POServer to synchronize the au-
dio/video playback using tempo changes (SPD 5,0
- SPD 3,6 - SPD 4,5 - . . . ), POClient continues to
send the current position in the movie (3720, 4195,
4658,. . . ).

In this example, the user manages to complete the
piece without the orchestra complaining, POServer de-
tects a movie position that indicates the piece is over
and instructs POClient to switch to the final page
(THX), which congratulates the user. After several
seconds, the system returns to the idle loop (LDI, JMP
0, VOL 0.05, SPD 7), and is ready for the next user.

4.7. Navigation

As indicated earlier, Personal Orchestra plays a
movie loop of the orchestra rehearsing until a user picks
up the baton and presses the button on it. The orches-
tra disappears, and the user selects his favorite lan-
guage and piece by moving the baton up and down
and pressing the button.

After selecting a piece, the orchestra appears again,
waiting for the user to start conducting. The conduct-
ing ends either in the orchestra complaining when the
conducting is too bad for several beats in a row, or with
the end of the piece, with the orchestra raising and a
big round of applause from the invisible audience be-
hind the conductor. The state diagram of the system
is shown in Figure 8.

4.8. Hardware and software

The client and server software was implemented in
Java. After initial experiments with Microsoft Win-
dows and its DirectX/DirectMedia interfaces, we de-
cided to use two Apple Power Macs G4/500 running
Mac OS 9 and QuickTime, since they provided a more
appropriate multimedia environment for our particu-
lar development and exhibition needs. All audio tracks
and the compressed video (using QuickTime’s Soren-
son video codec at a resolution of 716x288 pixels) for
each piece are contained in the combined QuickTime
movie file and are streamed directly off the hard disk.
The maximum data rate of the material is around
3.6 Megabytes per second, leading to each musical
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Figure 8. The Finite State Machine of
POServer.

piece (between 3 and 5 minutes) being represented
by a QuickTime movie file with a size between 600
Megabytes and 1 Gigabyte.

Video is projected via a rear-projector attached to
POClient; audio is fed from the same machine into a
high-end speaker setup with 2 front and 2 rear speakers
and a sub-woofer to enable sound locating as well as
creating an audio ambiance that fills the room.

5. Evaluation

5.1. User observations

In addition to user feedback during the iterative de-
sign and prototyping of Personal Orchestra, we con-
ducted several studies of visitors using the exhibit in
the first few weeks after the opening of the house
of music vienna. In an initial round, qualitative

observations showed that very few users managed to
conduct a complete piece successfully. On the other
hand, our “error message” of the orchestra complain-
ing turned out to be a major attraction of the system
for users, who would frequently try to intentionally pro-
voke a complaint from the orchestra. However, it often
happened that the orchestra would stop and complain
while the user was just getting acquainted with the sys-
tem, or shortly before finishing a piece. Both situations
were very frustrating for users. We therefore increased
the tolerance of the orchestra by fine-tuning our param-
eter sets, and introduced safety zones at the first and
last few seconds of each piece to avoid those frustrat-
ing error situations. We also learned that users did not
read the signage at the exhibit, and instead just looked
at the idle loop, wondering what to do. We therefore
rendered a single sentence (in both languages) into the
idle loop encouraging the user to pick up the baton and
push its button.

After those improvements, we did another study
where we observed, and then interviewed 30 random
users between 9 and 67 years, with a wide variety of
reported educational, musical, and computing back-
grounds. The average user tried to conduct 2.4 pieces.
Average usage time was 5.9 min. 97% of all users man-
aged to do basic conducting gestures recognized by the
system. 93% of all users realized that they could con-
trol tempo, 77% that they could control volume, and
37% that they could control emphasis of instrument
sections. 60% of all users managed to finish conduct-
ing a piece without errors, 27% did so on their first at-
tempt. On a scale of “good”, “mediocre”, and “bad”,
81% judged audio quality to be “good”, the remaining
19% “mediocre”. Video quality was judged “good” by
75%, “mediocre” by 21% and “bad” by 4% (one user).
93% voted the exhibit to be a top three exhibit in the
house of music vienna.

6. Portability

More recently, experiments by other research groups
have shown Apple’s recently released Mac OS X oper-
ating system to deliver surprisingly good audio perfor-
mance [17]. We have ported our system to this new
platform, and found that this helped eliminate most
of the remaining audio artifacts when switching tracks.
Also, initial tests show that its preemptive multitasking
and multiprocessor support balance processing power
well enough to let us run the entire system on one dual-
processor instead of two single-processor machines.

This simple port was largely possible because of two
design choices: first, because we used Java and Quick-
Time as high-level APIs, which are available in nearly



unchanged form under this more modern operating sys-
tem, there was little need to change the underlying code
apart from the low-level MIDI input routines. Second,
because POCP is a standard TCP-based protocol, we
were able to simply run POClient and POServer on the
same machine with sufficiently low overhead.

7. RELATED WORK

There is a large body of research in systems that
follow human conducting. We will only present those
efforts most relevant for comparison here.

Max Mathews’ Radio Baton [2] was among the first
systems to provide a conducting experience. It uses
the movement of one or more batons emitting radio
frequency signals above a metal plate to determine con-
ducting gestures. A MIDI file is played back in sync
with these movements. Conducting is restricted to the
space above the metal plate.

In Realtime Music Solution’s Virtual Orchestra [3], a
commercial system by F. Bianchi, D. Smith, J. Lazarus
and S. Gabriel two technicians watch the movements
of a conductor and adjust playback parameters of a
computer cluster accordingly in real time. The sys-
tem has been used successfully in many commercial
productions, but produces synthesized sound only and
does not include a video of the orchestra.

The WorldBeat interactive music exhibit [4] con-
tains a Virtual Baton feature to let users conduct
a classical piece using an infrared baton. It reacts
very directly and realistically, using gesture frequency,
phase, and size to adjust tempo and dynamics. It de-
tects the upbeat at the start of a piece, and detects
syncopic pauses in mid-play. Conducting again con-
trols playback of a MIDI score. The conducting feature
is based on earlier work by Guy Garnett et alii. [5].

Satoshi Usa’s MultiModal Conducting Simulator [6]
uses Hidden Markov Models and fuzzy logic to track
gestures with a high recognition rate of 98.95–99.74%.
It plays back a MIDI score, with matching tempo, dy-
namics, staccato/legato style, and an adjustable cou-
pling of the orchestra to the conducting.

Marrin’s Digital Baton measures additional parame-
ters beside baton position, such as pressure on parts of
its handle, to allow for richer expression [7]. Her Con-
ductor’s Jacket [8] uses sixteen additional sensors to
track muscle tension and respiration, translating ges-
tures based on these inputs to musical expressions. It
uses a MIDI-based synthesizer to create the resulting
musical performance.

Tommi Ilmonen’s Virtual Orchestra, demonstrated
at CHI 2000, is one of the few systems that also fea-
ture graphical output; however, it renders the orchestra

synthetically as 3-D characters. Audio output is again
MIDI-based [9].

Thus, all these systems share one or more of the
following characteristics, rendering them unsatisfying
for us:

• They are mostly designed to interpret professional
conducting styles, which does not match the skills
of our target user group of museum visitors.

• While many of them focus on optimizing their ges-
ture recognition, they do not pay the same at-
tention to their output quality: using synthesized
sound generation such as MIDI playback instead
of processing the actual audio recording of a piece
makes it virtually impossible to create a system
with the unique sound of a specific, renowned or-
chestra such as the Vienna Philharmonic playing
in their Golden Hall.

• These systems mostly do not provide a natural
video rendition of the orchestra playing—a critical
feature of the experience we wanted to provide.

8. FUTURE WORK

There are several research topics that we are cur-
rently working on, building on our experience with the
Personal Orchestra project:

Improved tempo following. The current system
only adjusts tempo once every conducted beat,
at the downward turning point. We are working
on an algorithm that tracks and compares mul-
tiple points along the beat trajectory with the
expected position at the tempo currently used.
The result is a Kalman filter[15] that predicts
tempo, amplitude, and size of the gestures on
an ongoing basis. How often these predictions
are then used to actually change tempo is up to
the playback algorithm, taking into account that
tempo changes (with the current method) involve
track changes that include the possility of audio
artifacts (but see below).

Usability improvements. Some minor usability
problems that have surfaced over time need to
be addressed. For example, we intend to supply
English subtitles to the (Austrian) complaints
from the orchestra, and improve the selection
screen at the beginning with an animated video
showing how to conduct, since this will grasp the
user’s attention more than the current graphical
and textual explanations (which, as observations
revealed, visitors hardly ever read.)



Continuous tempo adjustment. The latest ad-
vances in algorithms and computing power have
now made continuous real-time interactive audio
time-stretching an increasingly realistic alterna-
tive (see, for example, [16]). We are currently
working with those researchers to explore the
potential of such an approach. The benefits
would be that, at any time, the orchestra could
match the required speed precisely instead of
having to choose the closest existing track, and
that artifacts from switching tracks could be
eliminated altogether.

New input device. We have been working on a more
robust and readily available replacement for the
Lightning II infrared baton system to make it eas-
ier for us and others to continue research and ex-
periments in this domain.

9. SUMMARY

Personal Orchestra is the first system to let users
control an actual audio and video recording of a real
orchestra in real time, using natural conducting ges-
tures. The main technical achievement is the real-time
time-stretching architecture, while the overall design is
a result of applying a user-centered design pattern lan-
guage for interactive exhibits. The system also features
a very realistic reaction when the user fails to conduct
well enough, which has become a major part of the
attraction of this exhibit. The system has been suc-
cessful as a public exhibit that is experienced by over
300 visitors of the house of music vienna each day.
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